Differential entropy and time
Abstract
:1. Introduction
1.1 Notions of entropy
1.2 Differential entropy
1.3 Temporal behavior-preliminaries
1.4 Outline of the paper
2. Differential entropy: uncertainty versus information
2.1 Prerequisites
2.2 Events, states, microstates and macrostates
2.3 Shannon entropy and differential entropy
2.3.1 Bernoulli scheme and normal distribution
2.3.2 Coarse-graining
2.3.3 Coarse-graining exemplified: exponential density
2.3.4 Spatial coarse graining in quantum mechanics
2.4 Impact of dimensional units
3 Localization: differential entropy and Fisher information
4 Asymptotic approach towards equilibrium: Smoluchowski processes
4.1 Random walk
4.2 Kullback entropy versus differential entropy
4.3 Entropy dynamics in the Smoluchowski process
4.4 Kullback entropy versus Shannon entropy in the Smoluchowski process
4.5 One-dimensional Ornstein-Uhlenbeck process
4.6 Mean energy and the dynamics of Fisher information
5 Differential entropy dynamics in quantum theory
5.1 Balance equations
5.2 Differential entropy dynamics exemplified
5.2.1 Free evolution
5.2.2 Steady state
5.2.3 Squeezed state
5.2.4 Stationary states
6 Outlook
Acknowledgments
Dedication
References
- Alicki, R.; Fannes, M. Quantum Dynamical Systems; Oxford University Press: Oxford, 2001. [Google Scholar]
- Ohya, M.; Petz, D. Quantum Entropy and Its use; Springer-Verlag: Berlin, 1993. [Google Scholar]
- Wehrl, A. General properties of entropy. Rev. Mod. Phys. 1978, 50, 221–260. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Techn. J. 1948, 27, 379–423, 623–656. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley: NY, 1991. [Google Scholar]
- Sobczyk, K. Information Dynamics: Premises, Challenges and Results. Mechanical Systems and Signal Processing 2001, 15, 475–498. [Google Scholar] [CrossRef]
- Yaglom, A.M.; Yaglom, I.M. Probability and Information; D. Reidel: Dordrecht, 1983. [Google Scholar]
- Hartley, R.V.L. Transmission of information. Bell Syst. Techn. J. 1928, 7, 535–563. [Google Scholar] [CrossRef]
- Brillouin, L. Science and Information Theory; Academic Press: NY, 1962. [Google Scholar]
- Ingarden, R.S.; Kossakowski, A.; Ohya, M. Information Dynamics and Open Systems; Kluwer: Dordrecht, 1997. [Google Scholar]
- Brukner, Ĉ.; Zeilinger, A. Conceptual inadequacy of the Shannon information in quantum measurements. Phys. Rev. 2002, A 63, 022113. [Google Scholar] [CrossRef]
- Mana, P.G.L. Consistency of the Shannon entropy in quantum experiments. Phys. Rev. 2004, A 69, 062108. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information theory and statistical mechanics.II. Phys. Rev. 1957, 108, 171–190. [Google Scholar] [CrossRef]
- Stotland, A.; et al. The information entropy of quantum mechanical states. Europhys. Lett. 2004, 67, 700–706. [Google Scholar] [CrossRef]
- Partovi, M.H. Entropic formulation of uncertainty for quantum measurements. Phys. Rev. Lett. 1983, 50, 1883–1885. [Google Scholar] [CrossRef]
- Adami, C. Physics of information. 2004; arXiv:quant-ph/040505. [Google Scholar]
- Deutsch, D. Uncertainty in quantum measurement. Phys. Rev. Lett. 1983, 50, 631–633. [Google Scholar] [CrossRef]
- Garbaczewski, P.; Karwowski, W. Impenetrable barrriers and canonical quantization. Am. J. Phys. 2004, 72, 924–933. [Google Scholar] [CrossRef]
- Hirschman, I.I. A note on entropy. Am. J. Math. 1957, 79, 152–156. [Google Scholar] [CrossRef]
- Beckner, W. Inequalities in Fourier analysis. Ann. Math. 1975, 102, 159–182. [Google Scholar] [CrossRef]
- Bia-lynicki-Birula, I.; Mycielski, J. Uncertainty Relations for Information Entropy in Wave Mechanics. Commun. Math. Phys. 1975, 44, 129–132. [Google Scholar] [CrossRef]
- Bia-lynicki-Birula, I.; Madajczyk, J. Entropic uncertainty relations for angular distributions. Phys. Lett. 1985, A 108, 384–386. [Google Scholar] [CrossRef]
- Stam, A.J. Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inf. and Control 1959, 2, 101–112. [Google Scholar] [CrossRef]
- Dembo, A.; Cover, T. Information theoretic inequalities. IEEE Trans. Inf. Th. 1991, 37, 1501–1518. [Google Scholar] [CrossRef]
- Maasen, H.; Uffink, J.B.M. Generalized Entropic Uncertainty Relations. Phys. Rev. Lett. 1988, 60, 1103–1106. [Google Scholar] [CrossRef] [PubMed]
- Blankenbecler, R.; Partovi, M.H. Uncertainty, entropy, and the statistical mechanics of microscopic systems. Phys. Rev. Lett. 1985, 54, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Sa´nchez-Ruiz, J. Asymptotic formula for the quantum entropy of position in energy eigenstates. Phys. Lett. 1997, A 226, 7–13. [Google Scholar]
- Halliwell, J.J. Quantum-mechanical histories and the uncertainty principle: Information-theoretic inequalities. Phys. Rev. 1993, D 48, 2739–2752. [Google Scholar] [CrossRef] [Green Version]
- Gadre, S.R.; et al. Some novel characteristics of atomic information entropies. Phys. Rev. 1985, A 32, 2602–2606. [Google Scholar] [CrossRef]
- Yan˜ez, R.J.; Van Assche, W.; Dehesa, J.S. Position and information entropies of the D-dimensional harmonic oscillator and hydrogen atom. Phys. Rev. 1994, A 50, 3065–3079. [Google Scholar]
- Yan˜ez, R.J.; et al. Entropic integrals of hyperspherical harmonics and spatial entropy of D-dimensional central potentials. J. Math. Phys. 1999, 40, 5675–5686. [Google Scholar]
- Buyarov, V.; et al. Computation of the entropy of polynomials orthogonal on an interval. SIAM J. Sci. Comp. to appear (2004), also math.NA/0310238. [CrossRef]
- Majernik, V.; Opatrny´, T. Entropic uncertainty relations for a quantum oscillator. J. Phys. A: Math. Gen. 1996, 29, 2187–2197. [Google Scholar] [CrossRef]
- Majernik, V.; Richterek, L. Entropic uncertainty relations for the infinite well. J. Phys. A: Math. Gen. 1997, 30, L49–L54. [Google Scholar] [CrossRef]
- Massen, S.E.; Panos, C.P. Universal property of the information entropy in atoms, nuclei and atomic clusters. Phys. Lett. 1998, A 246, 530–532. [Google Scholar] [CrossRef]
- Massen, S.E.; et al. Universal property of information entropy in fermionic and bosonic systems. Phys. Lett. 2002, A 299, 131–135. [Google Scholar] [CrossRef]
- Massen, S.E. Application of information entropy to nuclei. Phys. Rev. 2003, C 67, 014314. [Google Scholar] [CrossRef]
- Coffey, M.W. Asymtotic relation for the quantum entropy of momentum in energy eigenstates. Phuys. Lett. 2004, A 324, 446–449. [Google Scholar] [CrossRef]
- Coffey, M.W. Semiclassical position entropy for hydrogen-like atoms. J. Phys. A: Math. Gen. 2003, 36, 7441–7448. [Google Scholar] [CrossRef]
- Dunkel, J.; Trigger, S.A. Time-dependent entropy of simple quantum model systems. Phys. Rev. 2005, A 71, 052102. [Google Scholar] [CrossRef] [Green Version]
- Santhanam, M.S. Entropic uncertainty relations for the ground state of a coupled sysytem. Phys. Rev. 2004, A 69, 042301. [Google Scholar] [CrossRef]
- Balian, R. Random matrices and information theory. Nuovo Cim. 1968, B 57, 183–103. [Google Scholar] [CrossRef]
- Werner, S.A.; Rauch, H. Neutron interferometry: Lessons in Experimental Quantum Physics; Oxford University Press: Oxford, 2000. [Google Scholar]
- Zeilinger, A.; et al. Single- and double-slit diffraction of neutrons. Rev. Mod. Phys. 1988, 60, 1067–1073. [Google Scholar] [CrossRef]
- Caves, C.M.; Fuchs, C. Quantum information: how much information in a state vector? Ann. Israel Phys. Soc. 1996, 12, 226–237. [Google Scholar]
- Newton, R.G. What is a state in quantum mechanics? Am. J. Phys. 2004, 72, 348–350. [Google Scholar] [CrossRef]
- Mackey, M.C. The dynamic origin of increasing entropy. Rev. Mod. Phys. 1989, 61, 981–1015. [Google Scholar] [CrossRef]
- Lasota, A.; Mackey, M.C. Chaos, Fractals and Noise; Springer-Verlag: Berlin, 1994. [Google Scholar]
- Berndl, K.; et al. On the global existence of Bohmian mechanics. Commun. Math. Phys. 1995, 173, 647–673. [Google Scholar] [CrossRef]
- Nelson, E. Dynamical Theories of the Brownian Motion; Princeton University Press: Princeton, 1967. [Google Scholar]
- Carlen, E. Conservative diffusions. Commun. Math. Phys. 1984, 94, 293–315. [Google Scholar] [CrossRef]
- Eberle, A. Uniqueness and Non-uniqueness of Semigroups Generated by Singular Diffusion Operators; LNM vol. 1718, Springer-Verlag: Berlin, 2000. [Google Scholar]
- Garbaczewski, P. Perturbations of noise: Origins of isothermal flows. Phys. Rev. E 1999, 59, 1498–1511. [Google Scholar] [CrossRef]
- Garbaczewski, P.; Olkiewicz, R. Feynman-Kac kernels in Markovian representations of the Schrödinger interpolating dynamics. J. Math. Phys. 1996, 37, 732–751. [Google Scholar] [CrossRef]
- Ambegaokar, V.; Clerk, A. Entropy and time. Am. J. Phys. 1999, 67, 1068–1073. [Google Scholar] [CrossRef] [Green Version]
- Tre¸bicki, J.; Sobczyk, K. Maximum entropy principle and non-stationary distributions of stochastic systems. Probab. Eng. Mechanics 1996, 11, 169–178. [Google Scholar]
- Huang, K. Statistical Mechanics; Wiley: New York, 1987. [Google Scholar]
- Cercignani, C. Theory and Application of the Boltzmann Equation; Scottish Academic Press: Edinburgh, 1975. [Google Scholar]
- Daems, D.; Nicolis, G. Entropy production and phase space volume contraction. Phys. Rev. E 1999, 59, 4000–4006. [Google Scholar] [CrossRef]
- Dorfman, J.R. An Introduction to Chaos in Nonequilibrium Statistical Physics; Cambridge Univ. Press: Cambridge, 1999. [Google Scholar]
- Gaspard, P. Chaos, Scattering and Statistical Mechanics; Cambridge Univ. Press: Cambridge, 1998. [Google Scholar]
- Deco, G.; et al. Determining the information flow of dynamical systems from continuous probability distributions. Phys. Rev. Lett. 1997, 78, 2345–2348. [Google Scholar] [CrossRef]
- Bologna, M.; et al. Trajectory versus probability density entropy. Phys. Rev. E 2001, E 64, 016223. [Google Scholar] [CrossRef] [PubMed]
- Bag, C.C.; et al. Noise properties of stochastic processes and entropy production. Phys. Rev. 2001, E 64, 026110. [Google Scholar] [CrossRef] [PubMed]
- Bag, B.C. Upper bound for the time derivative of entropy for nonequilibrium stochastic processes. Phys. Rev. 2002, E 65, 046118. [Google Scholar] [CrossRef] [PubMed]
- Hatano, T.; Sasa, S. Steady-State Thermodynamics of Langevin Systems. Phys. Rev. Lett. 2001, 86, 3463–3466. [Google Scholar] [CrossRef] [PubMed]
- Qian, H. Mesoscopic nonequilibrium thermodynamics of single macromolecules and dynamic entropy-energy compensation. Phys. Rev. 2001, E 65, 016102. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.-Q.; Qian, M.; Qian, M.-P. Mathematical theory of nonequilibrium steady states; LNM vol. 1833, Springer-Verlag: Berlin, 2004. [Google Scholar]
- Qian, H.; Qian, M.; Tang, X. Thermodynamics of the general diffusion process: time-reversibility and entropy production. J. Stat. Phys. 2002, 107, 1129–1141. [Google Scholar] [CrossRef]
- Ruelle, D. Positivity of entropy production in nonequilibrium statistical mechanics. J. Stat. Phys. 1996, 85, 1–23. [Google Scholar] [CrossRef]
- Munakata, T.; Igarashi, A.; Shiotani, T. Entropy and entropy production in simple stochastic models. Phys. Rev. 1998, E 57, 1403–1409. [Google Scholar]
- Tribus, M.; Rossi, R. On the Kullback information measure as a basis for information theory: Comments on a proposal by Hobson and Chang. J. Stat. Phys. 1973, 9, 331–338. [Google Scholar] [CrossRef]
- Smith, J.D.H. Some observations on the concepts of information-theoretic entropy and randomness. Entropy 2001, 3, 1–11. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Stochastic problems in physics and astronomy. Rev. Mod. Phys. 1943, 15, 1–89. [Google Scholar] [CrossRef]
- Hall, M.J.W. Universal geometric approach to uncertainty, entropy and infromation. Phys. Rev. 1999, A 59, 2602–2615. [Google Scholar] [CrossRef]
- Pipek, J.; Varga, I. Universal classification scheme for the spatial-localization properties of one-particle states in finite d-dimensional systems. Phys. Rev. A 1992, A 46, 3148–3163. [Google Scholar] [CrossRef] [PubMed]
- Varga, I.; Pipek, J. Rényi entropies characterizing the shape and the extension of the phase-space representation of quantum wave functions in disordered systems. Phys. Rev. 2003, E 68, 026202. [Google Scholar] [CrossRef] [PubMed]
- McClendon, M.; Rabitz, H. Numerical simulations in stochastic mechanics. Phys. Rev. 1988, A 37, 3479–3492. [Google Scholar] [CrossRef]
- Garbaczewski, P. Signatures of randomness in quantum spectra. Acta Phys. Pol. 2002, A 33, 1001–1024. [Google Scholar]
- Hu, B.; et al. Quantum chaos of a kicked particle in an infinite potential well. Phys. Rev. Lett. 1999, 82, 4224–4227. [Google Scholar] [CrossRef]
- Kullback, S. Information Theory and Statistics; Wiley: NY, 1959. [Google Scholar]
- Cramér, H. Mathematical methods of statistics; Princeton University Press: Princeton, 1946. [Google Scholar]
- Hall, M.J.W. Exact uncertainty relations. Phys. Rev. 2001, A 64, 052103. [Google Scholar] [CrossRef]
- Garbaczewski, P. Stochastic models of exotic transport. Physica 2000, A 285, 187–198. [Google Scholar] [CrossRef]
- Carlen, E.A. Superadditivity of Fisher’s information and logarithmic Sobolev inequalities. J. Funct. Anal. 1991, 101, 194–211. [Google Scholar] [CrossRef] [Green Version]
- Frieden, B.R.; Sofer, B.H. Lagrangians of physics and the game of Fisher-information transfer. Phys. Rev. 1995, E 52, 2274–2286. [Google Scholar] [CrossRef]
- Catalan, R.G.; Garay, J.; Lopez-Ruiz, R. Features of the extension of a statistical measure of complexity to continuous systems. Phys. Rev. 2002, E 66, 011102. [Google Scholar] [CrossRef] [PubMed]
- Risken, H. The Fokker-Planck Equation; Springer-Verlag: Berlin, 1989. [Google Scholar]
- Hasegawa, H. Thermodynamic properties of non-equilibrium states subject to Fokker-Planck equations. Progr. Theor. Phys. 1977, 57, 1523–1537. [Google Scholar] [CrossRef]
- Vilar, J.M.G.; Rubi, J.M. Thermodynamics ”beyond” local equilibrium. Proc. Nat. Acad. Sci. (NY) 2001, 98, 11081–11084. [Google Scholar] [CrossRef] [PubMed]
- Kurchan, J. Fluctuation theorem for stochastic dynamics. J. Phys. A: Math. Gen. 1998, 31, 3719–3729. [Google Scholar] [CrossRef]
- Mackey, M.C.; Tyran-Kamin´ska, M. Effects of noise on entropy evolution. 2005; arXiv.org preprint cond-mat/0501092. [Google Scholar]
- Mackey, M.C.; Tyran-Kaminńska, M. Temporal behavior of the conditional and Gibbs entropies. 2005; arXiv.org preprint cond-mat/0509649. [Google Scholar]
- Czopnik, R.; Garbaczewski, P. Frictionless Random Dynamics: Hydrodynamical Formalism. Physica 2003, A 317, 449–471. [Google Scholar] [CrossRef]
- Fortet, R. Résolution d’un systéme d’équations de M. Schrödingeer. J. Math. Pures Appl. 1040, 9, 83. [Google Scholar]
- Blanchard, Ph.; Garbaczewski, P. Non-negative Feynman-Kac kernels in Schrödinger’s interpolation problem. J. Math. Phys. 1997, 38, 1–15. [Google Scholar] [CrossRef]
- Jaynes, E.T. Violations of Boltzmann’s H Theorem in Real Gases. Phys. Rev. 1971, A 4, 747–750. [Google Scholar] [CrossRef]
- Voigt, J. Stochastic operators, Information and Entropy. Commun. Math. Phys. 1981, 81, 31–38. [Google Scholar] [CrossRef]
- Voigt, J. The H-Theorem for Boltzmann type equations. J. Reine Angew. Math 1981, 326, 198–213. [Google Scholar]
- Toscani, G. Kinetic approach to the asymptotic behaviour of the solution to diffusion equation. Rend. di Matematica 1996, Serie VII 16, 329–346. [Google Scholar]
- Bobylev, A.V.; Toscani, G. On the generalization of the Boltzmann H-theorem for a spatially homogeneous Maxwell gas. J. Math. Phys. 1992, 33, 2578–2586. [Google Scholar] [CrossRef]
- Arnold, A.; et al. On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Comm. Partial Diff. Equations 2001, 26, 43–100. [Google Scholar] [CrossRef]
© 2005 by MDPI (http://www.mdpi.org). Reproduction for noncommercial purposes permitted.
Share and Cite
Garbaczewski, P. Differential entropy and time. Entropy 2005, 7, 253-299. https://doi.org/10.3390/e7040253
Garbaczewski P. Differential entropy and time. Entropy. 2005; 7(4):253-299. https://doi.org/10.3390/e7040253
Chicago/Turabian StyleGarbaczewski, Piotr. 2005. "Differential entropy and time" Entropy 7, no. 4: 253-299. https://doi.org/10.3390/e7040253
APA StyleGarbaczewski, P. (2005). Differential entropy and time. Entropy, 7(4), 253-299. https://doi.org/10.3390/e7040253