Multi-Party Semi-Quantum Simultaneous Ascending Auction Protocol Based on Single-Particle States
Abstract
1. Introduction
2. Preliminaries
2.1. Simultaneous Ascending Auction Mechanism
2.2. Semi-Quantum Protocol Architecture and Trust Model
2.3. Protocol Characteristics
3. Multi-Party Semi-Quantum Simultaneous Ascending Auction Protocol
3.1. Initialization Phase
3.2. Identity Encoding Distribution Phase
3.3. Bidding Phase
3.4. Result Announcement Phase
4. Simulation of the Proposed Protocol
4.1. Multi-Party Semi-Quantum Identity Encoding Distribution
4.2. Multi-Party Semi-Quantum Simultaneous Ascending Auction
5. Performance Analysis
5.1. External Attacks on Security
5.1.1. Intercept-Resend Attack
5.1.2. Measure-Resend Attack
5.1.3. Trojan Horse Attack
5.2. Internal Attacks on Security
5.3. Secrecy Capacity Analysis
5.4. Anonymity Analysis
5.5. Verifiability and Non-Repudiation Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; van Leent, T.; Redeker, K.; Garthoff, R.; Schwonnek, R.; Fertig, F.; Eppelt, S.; Rosenfeld, W.; Scarani, V.; Lim, C.C.W.; et al. A device-independent quantum key distribution system for distant users. Nature 2022, 607, 687–691. [Google Scholar] [CrossRef]
- Zahidy, M.; Ribezzo, D.; De Lazzari, C.; Vagniluca, I.; Biagi, N.; Müller, R.; Occhipinti, T.; Oxenløwe, L.K.; Galili, M.; Hayashi, T.; et al. Practical high-dimensional quantum key distribution protocol over deployed multicore fiber. Nat. Commun. 2024, 15, 1651. [Google Scholar] [CrossRef]
- Sheng, Y.B.; Zhou, L.; Long, G.L. One-step quantum secure direct communication. Sci. Bull. 2022, 67, 367–374. [Google Scholar] [CrossRef]
- Sun, X.F.; Fan, L.; Cao, C.; Yu, W.S. Measurement-device-independent quantum secure multiparty summation based on entanglement swapping. Laser Phys. Lett. 2023, 20, 125201. [Google Scholar] [CrossRef]
- Li, C.; Ye, C.; Tian, Y.; Chen, X.B.; Li, J. Cluster-state-based quantum secret sharing for users with different abilities. Quantum Inf. Process. 2021, 20, 385. [Google Scholar] [CrossRef]
- Ma, R.H.; Gao, F.; Cai, B.B.; Lin, S. Quantum Secret Reconstruction. Adv. Quantum Technol. 2024, 7, 2300273. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, C.; Gao, F.; Qi, H.; Wen, Q. Self-tallying quantum anonymous voting. Phys. Rev. A 2016, 94, 022333. [Google Scholar] [CrossRef]
- Borjigin, W.; Ota, K.; Dong, M. In broker we trust: A double-auction approach for resource allocation in NFV markets. IEEE Trans. Netw. Serv. Manag. 2018, 15, 1322–1333. [Google Scholar] [CrossRef]
- Bag, S.; Hao, F.; Shahandashti, S.F.; Ray, I.G. SEAL: Sealed-bid auction without auctioneers. IEEE Trans. Inf. Forensics Secur. 2019, 15, 2042–2052. [Google Scholar] [CrossRef]
- Borjigin, W.; Ota, K.; Dong, M. Multiple-Walrasian auction mechanism for tree valuation service in NFV market. IEEE Trans. Comput. Soc. Syst. 2022, 10, 61–71. [Google Scholar] [CrossRef]
- Ye, C.Q.; Li, J.; Chen, X.B.; Dong, M.; Ota, K. Measurement-based quantum sealed-bid auction. IEEE Trans. Circuits Syst. I Regul. Pap. 2023, 70, 5352–5365. [Google Scholar] [CrossRef]
- Dowling, J.P.; Milburn, G.J. Quantum technology: The second quantum revolution. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2003, 361, 1655–1674. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; pp. 124–134. [Google Scholar]
- Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219. [Google Scholar]
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 2014, 560, 7–11. [Google Scholar] [CrossRef]
- Piotrowski, E.W.; Sładkowski, J. Quantum auctions: Facts and myths. Phys. A Stat. Mech. Its Appl. 2008, 387, 3949–3953. [Google Scholar] [CrossRef]
- Naseri, M. Secure quantum sealed-bid auction. Opt. Commun. 2009, 282, 1939–1943. [Google Scholar] [CrossRef]
- Qin, S.J.; Gao, F.; Wen, Q.Y.; Meng, L.M.; Zhu, F.C. Cryptanalysis and improvement of a secure quantum sealed-bid auction. Opt. Commun. 2009, 282, 4014–4016. [Google Scholar] [CrossRef]
- Yang, Y.G.; Naseri, M.; Wen, Q.Y. Improved secure quantum sealed-bid auction. Opt. Commun. 2009, 282, 4167–4170. [Google Scholar] [CrossRef]
- Zhao, Z.; Naseri, M.; Zheng, Y. Secure quantum sealed-bid auction with post-confirmation. Opt. Commun. 2010, 283, 3194–3197. [Google Scholar] [CrossRef]
- Liu, W.J.; Wang, F.; Ji, S.; Qu, Z.G.; Wang, X.J. Attacks and improvement of quantum sealed-bid auction with EPR pairs. Commun. Theor. Phys. 2014, 61, 686. [Google Scholar] [CrossRef]
- Liu, W.J.; Wang, H.B.; Yuan, G.L.; Xu, Y.; Chen, Z.Y.; An, X.X.; Ji, F.G.; Gnitou, G.T. Multiparty quantum sealed-bid auction using single photons as message carrier. Quantum Inf. Process. 2016, 15, 869–879. [Google Scholar] [CrossRef]
- Zhang, R.; Shi, R.H.; Qin, J.Q.; Peng, Z.W. An economic and feasible Quantum Sealed-bid Auction protocol. Quantum Inf. Process. 2018, 17, 35. [Google Scholar] [CrossRef]
- Shi, R.H. Quantum sealed-bid auction without a trusted third party. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 4221–4231. [Google Scholar] [CrossRef]
- Shi, R.H. Anonymous quantum sealed-bid auction. IEEE Trans. Circuits Syst. II Express Briefs 2021, 69, 414–418. [Google Scholar] [CrossRef]
- Shi, R.H.; Li, Y.F. A feasible quantum sealed-bid auction scheme without an auctioneer. IEEE Trans. Quantum Eng. 2022, 3, 2100212. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, Q.; Long, Y.; Sun, Z. Secure three-party semi-quantum summation using single photons. Int. J. Theor. Phys. 2021, 60, 3478–3487. [Google Scholar] [CrossRef]
- Yang, C.W.; Tsai, C.W.; Chen, C.A.; Lin, J. Robust Semi-Quantum Summation over a Collective-Dephasing Noise Channel. Mathematics 2023, 11, 1405. [Google Scholar] [CrossRef]
- Ye, C.Q.; Li, J.; Chen, X.B.; Dong, M.; Ota, K.; Khalique, A.; Durad, M.H. Semi-Quantum Secure Multiparty Summation and its Applications to Anonymous Auction and Ranking. Adv. Quantum Technol. 2024, 7, 2300347. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, N.; Ye, C.; Bian, G.; Li, J. Different secure semi-quantum summation models without measurement. EPJ Quantum Technol. 2024, 11, 35. [Google Scholar] [CrossRef]
- Ye, T.Y.; Xu, T.J.; Geng, M.J.; Chen, Y. Two-party secure semiquantum summation against the collective-dephasing noise. Quantum Inf. Process. 2022, 21, 118. [Google Scholar] [CrossRef]
- Hu, J.L.; Ye, T.Y. Three-party secure semiquantum summation without entanglement among quantum user and classical users. Int. J. Theor. Phys. 2022, 61, 170. [Google Scholar] [CrossRef]
- Milgrom, P. Putting auction theory to work: The simultaneous ascending auction. J. Political Econ. 2000, 108, 245–272. [Google Scholar] [CrossRef]
- Li, G.D.; Liu, J.C.; Wang, Q.L.; Sun, W.Q. Employing single photons for measurement-device-independent quantum secure direct communication with identity authentication. IEEE Commun. Lett. 2024, 28, 473–477. [Google Scholar] [CrossRef]












| Initial States | Measurement Results | Mapping Results |
|---|---|---|
| 0 | ||
| 1 | ||
| 0 | ||
| 1 | ||
| 0 | ||
| 1 | ||
| 0 | ||
| 1 |
| Initial State | Comp. Basis | Mapping | Fourier Basis | Mapping |
|---|---|---|---|---|
| 0 | 1 | |||
| 0 | 1 | |||
| 1 | 0 | |||
| 1 | 0 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | |
| ∣0〉 | ∣1〉 | ∣+〉 | ∣1〉 | ∣1〉 | ∣0〉 | ∣0〉 | ∣0〉 | ∣−〉 | ∣−〉 | |
| ∣0〉 | ∣−〉 | ∣−〉 | ∣0〉 | ∣+〉 | ∣+〉 | ∣−〉 | ∣0〉 | ∣+〉 | ∣−〉 | |
| ∣0〉 | ∣−〉 | ∣+〉 | ∣0〉 | ∣1〉 | ∣+〉 | ∣0〉 | ∣0〉 | ∣+〉 | ∣−〉 | |
| 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | |
| ∣+〉 | ∣1〉 | ∣−〉 | ∣0〉 | ∣0〉 | ∣−〉 | ∣+〉 | ∣1〉 | ∣+〉 | ∣1〉 | |
| ∣−〉 | ∣+〉 | ∣1〉 | ∣−〉 | ∣+〉 | ∣+〉 | ∣−〉 | ∣1〉 | ∣1〉 | ∣0〉 | |
| ∣−〉 | ∣1〉 | ∣−〉 | ∣0〉 | ∣+〉 | ∣+〉 | ∣+〉 | ∣1〉 | ∣+〉 | ∣1〉 | |
| 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | |
| ∣−〉 | ∣−〉 | ∣+〉 | ∣0〉 | ∣1〉 | ∣−〉 | ∣0〉 | ∣+〉 | ∣−〉 | ∣1〉 | |
| ∣−〉 | ∣0〉 | ∣1〉 | ∣+〉 | ∣−〉 | ∣−〉 | ∣0〉 | ∣0〉 | ∣−〉 | ∣+〉 | |
| ∣−〉 | ∣0〉 | ∣+〉 | ∣+〉 | ∣1〉 | ∣−〉 | ∣0〉 | ∣+〉 | ∣−〉 | ∣1〉 | |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
| 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | |
| ∣+〉 | ∣1〉 | ∣+〉 | ∣1〉 | ∣−〉 | ∣1〉 | ∣0〉 | ∣0〉 | ∣+〉 | ∣1〉 | |
| ∣−〉 | ∣0〉 | ∣+〉 | ∣1〉 | ∣1〉 | ∣1〉 | ∣+〉 | ∣0〉 | ∣+〉 | ∣0〉 | |
| ∣+〉 | ∣0〉 | ∣+〉 | ∣1〉 | ∣−〉 | ∣1〉 | ∣+〉 | ∣0〉 | ∣+〉 | ∣1〉 | |
| 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | |
| ∣0〉 | ∣+〉 | ∣1〉 | ∣−〉 | ∣−〉 | ∣1〉 | ∣0〉 | ∣+〉 | ∣−〉 | ∣+〉 | |
| ∣0〉 | ∣1〉 | ∣−〉 | ∣1〉 | ∣+〉 | ∣−〉 | 1 | ∣−〉 | ∣+〉 | ∣1〉 | |
| ∣0〉 | ∣+〉 | ∣−〉 | ∣−〉 | ∣+〉 | ∣1〉 | ∣0〉 | ∣+〉 | ∣−〉 | ∣1〉 | |
| 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | |
| ∣0〉 | ∣1〉 | ∣+〉 | ∣1〉 | ∣−〉 | ∣0〉 | ∣1〉 | ∣−〉 | ∣+〉 | ∣+〉 | |
| ∣−〉 | ∣0〉 | ∣+〉 | ∣−〉 | ∣−〉 | ∣+〉 | ∣1〉 | ∣−〉 | ∣0〉 | ∣1〉 | |
| ∣−〉 | ∣0〉 | ∣+〉 | ∣1〉 | ∣−〉 | ∣+〉 | ∣1〉 | ∣−〉 | ∣+〉 | ∣+〉 |
| Fake Particles | Measurement Result | Probability |
|---|---|---|
| ∣+〉 | ∣+〉 | 0 |
| ∣−〉 | ∣−〉 | 1 |
| ∣0〉 | ∣+〉 or ∣−〉 | |
| ∣1〉 | ∣+〉 or ∣−〉 |
| Eve’s Choice | Eve’s Measurement | Fake Particles | Probability |
|---|---|---|---|
| Fourier basis | ∣+〉 | ∣+〉 | 0 |
| Computational basis | ∣+〉 | ∣+〉 | 0 |
| Computational basis | ∣−〉 | ∣−〉 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wu, X.; Yang, Y.; Wang, B.; Zhang, Y.; Han, Y. Multi-Party Semi-Quantum Simultaneous Ascending Auction Protocol Based on Single-Particle States. Entropy 2026, 28, 39. https://doi.org/10.3390/e28010039
Wu X, Yang Y, Wang B, Zhang Y, Han Y. Multi-Party Semi-Quantum Simultaneous Ascending Auction Protocol Based on Single-Particle States. Entropy. 2026; 28(1):39. https://doi.org/10.3390/e28010039
Chicago/Turabian StyleWu, Xiuqi, Yu Yang, Baichang Wang, Yue Zhang, and Yunguang Han. 2026. "Multi-Party Semi-Quantum Simultaneous Ascending Auction Protocol Based on Single-Particle States" Entropy 28, no. 1: 39. https://doi.org/10.3390/e28010039
APA StyleWu, X., Yang, Y., Wang, B., Zhang, Y., & Han, Y. (2026). Multi-Party Semi-Quantum Simultaneous Ascending Auction Protocol Based on Single-Particle States. Entropy, 28(1), 39. https://doi.org/10.3390/e28010039

