On the Application of a Hybrid Incomplete Exponential Sum to Aperiodic Hamming Correlation of Some Frequency-Hopping Sequences
Abstract
1. Introduction
2. Preliminaries
2.1. Characters of Finite Fields and Gaussian Sums
2.2. Aperiodic Hamming Correlation Function of FHSs
2.3. Relevant Notations
- q is a power of a prime p;
- are two positive integers with ;
- e is a positive integer with and ;
- is the p-th root of unity;
- is the finite field of order q;
- is a primitive element of the finite field , and ;
- , , , and ;
- Identifying with the n-dimensional -vector space , each element in can be viewed as a vector over ;
- is a zero vector of length k.
3. An Upper Bound on a Hybrid Incomplete Exponential Sum
4. Bounds on the Aperiodic Hamming Correlation of Some FHSs Constructed via Trace Functions
5. Discussion on the Bound
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Golomb, S.W.; Gong, G. Signal Design for Good Correlation: For Wireless Communication, Cryptography and Radar; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Souheyl, T.; Jean-Marie, B.; Gilbert, L. Optimizing hopping sequences for reducing interference in frequency hopping cellular networks. Eng. Optim. 2010, 42, 33–44. [Google Scholar] [CrossRef]
- Chi, T.; Chen, M. A frequency hopping method for spatial RFID/WiFi/Bluetooth scheduling in agricultural IoT. Wirel. Netw. 2019, 25, 805–817. [Google Scholar] [CrossRef]
- Zeng, Q.; Li, H.S.; Peng, D.Y. Frequency-hopping based communication network with multi-level QoSs in smart grid: Code design and performance analysis. IEEE Trans. Smart Grid 2012, 3, 1841–1852. [Google Scholar] [CrossRef]
- Long, X.W.; Wu, W.H.; Li, K.; Wang, J.; Wu, S.L. Multi-timeslot wide-gap frequency-hopping RFPA signal and its sidelobe suppression. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 634–649. [Google Scholar] [CrossRef]
- Simon, M.K.; Omura, J.K.; Scholtz, R.A.; Levitt, B.K. Spread Spectrum Communications Handbook; McGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- Ge, G.; Miao, Y.; Yao, Z.H. Optimal frequency hopping sequences: Auto- and cross-correlation properties. IEEE Trans. Inf. Theory 2009, 55, 867–879. [Google Scholar] [CrossRef]
- Ding, C.; Moisio, M.J.; Yuan, J. Algebraic constructions of optimal frequency-hopping sequences. IEEE Trans. Inf. Theory 2007, 53, 2606–2610. [Google Scholar] [CrossRef]
- Helleseth, T.; Kumar, P.V. Sequences with Low Correlation. In Handbook of Coding Theory; Pless, V., Huffman, C., Eds.; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Lempel, A.; Greenberger, H. Families of sequences with optimal Hamming correlation properties. IEEE Trans. Inf. Theory 1974, 20, 90–94. [Google Scholar] [CrossRef]
- Peng, D.Y.; Fan, P.Z. Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences. IEEE Trans. Inf. Theory 2004, 50, 2149–2154. [Google Scholar] [CrossRef]
- Eun, Y.C.; Jin, S.Y.; Hong, Y.P.; Song, H.Y. Frequency hopping sequences with optimal partial autocorrelation properties. IEEE Trans. Inf. Theory 2004, 50, 2438–2442. [Google Scholar] [CrossRef]
- Zhou, Z.C.; Tang, X.H.; Niu, X.H.; Parampalli, U. New classes of frequency-hopping sequences with optimal partial correlation. IEEE Trans. Inf. Theory 2012, 58, 453–458. [Google Scholar] [CrossRef]
- Peng, D.Y.; Fan, P.Z.; Lee, M.H. Lower bounds on the periodic Hamming correlations of frequency hopping sequences with low hit zone. Sci. China Ser. F Inf. Sci. 2006, 49, 208–218. [Google Scholar] [CrossRef]
- Liu, X.; Hong, S.F.; Zeng, Q.; Zhou, L. NHZ frequency hopping sequence sets under aperiodic Hamming correlation: Tighter bound and optimal constructions. Cryptogr. Commun. 2022, 14, 347–356. [Google Scholar] [CrossRef]
- Liu, X. Low-hit-zone frequency hopping sequence sets under aperiodic Hamming correlation. Cryptogr. Commun. 2024, 16, 647. [Google Scholar] [CrossRef]
- Tian, X.Y.; Han, H.Y.; Zhou, L.; Wu, H.Z. New bounds for aperiodic wide-gap frequency hopping sequences. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2025, 108, 165–168. [Google Scholar] [CrossRef]
- Yang, S.F.; Jiang, K.C.; Xu, Z.; Bai, Y.B. A tighter lower bound on aperiodic Hamming correlation of frequency hopping sequences. In Proceedings of the 2024 IEEE 24th International Conference on Communication Technology (ICCT), Chengdu, China, 18–20 October 2024; pp. 1874–1878. [Google Scholar]
- Yang, S.F.; Jiang, K.C.; Xu, Z.; Bai, Y.B. New lower bounds on aperiodic Hamming correlation of frequency hopping sequences. In Proceedings of the 2024 IEEE 16th International Conference on Advanced Infocomm Technology (ICAIT), Enshi, China, 16–19 August 2024; pp. 160–165. [Google Scholar]
- Zhou, Z.C.; Tang, X.H.; Yang, Y.; Parampalli, U. A hybrid incomplete exponential sum with application to aperiodic Hamming correlation of some frequency-hopping sequences. IEEE Trans. Inf. Theory 2012, 58, 6610–6615. [Google Scholar] [CrossRef]
- Barg, A. Incomplete sums, DC-constrained codes, and that maintain synchronization. Des. Codes Cryptogr. 1993, 3, 105–116. [Google Scholar] [CrossRef]
- Tang, D.; Carlet, C.; Tang, X.H. Highly nonlinear boolean functions with optimal algebraic immunity and good behavior against fast algebraic attacks. IEEE Trans. Inf. Theory 2013, 59, 653–664. [Google Scholar] [CrossRef]
- Lahtonen, J. On the odd and the aperiodic correlation properties of the Kasami sequences. IEEE Trans. Inf. Theory 1995, 41, 1506–1508. [Google Scholar] [CrossRef]
- Sarwate, D. An upper bound on the aperiodic autocorrelation function for a maximal-length sequence. IEEE Trans. Inf. Theory 1984, 30, 685–687. [Google Scholar] [CrossRef]
- Shanbhag, A.G.; Kumar, P.V.; Helleseth, T. Upper bound for a hybrid sum over Galois rings with applications to aperiodic correlation of some-ary sequences. IEEE Trans. Inf. Theory 1996, 42, 250–254. [Google Scholar] [CrossRef]
- Rudolf, L.; Harald, N. Finite Fields, 2nd ed.; Cambridge University Press: New York, NY, USA, 1996. [Google Scholar]
- Zhou, Z.C.; Tang, X.H.; Peng, D.Y.; Parampalli, U. New constructions for optimal sets of frequency-hopping sequences. IEEE Trans. Inf. Theory 2011, 57, 3831–3840. [Google Scholar] [CrossRef]
q | N | Δ | Y |
---|---|---|---|
3 | 13 | 1.23 | 3.09 |
5 | 62 | 1.97 | 5.23 |
7 | 171 | 2.65 | 7.22 |
364 | 3.32 | 9.08 | |
11 | 665 | 3.99 | 10.84 |
13 | 1098 | 4.66 | 12.51 |
17 | 2456 | 5.33 | 15.67 |
19 | 3429 | 6.00 | 17.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Han, H. On the Application of a Hybrid Incomplete Exponential Sum to Aperiodic Hamming Correlation of Some Frequency-Hopping Sequences. Entropy 2025, 27, 988. https://doi.org/10.3390/e27090988
Li P, Han H. On the Application of a Hybrid Incomplete Exponential Sum to Aperiodic Hamming Correlation of Some Frequency-Hopping Sequences. Entropy. 2025; 27(9):988. https://doi.org/10.3390/e27090988
Chicago/Turabian StyleLi, Peihua, and Hongyu Han. 2025. "On the Application of a Hybrid Incomplete Exponential Sum to Aperiodic Hamming Correlation of Some Frequency-Hopping Sequences" Entropy 27, no. 9: 988. https://doi.org/10.3390/e27090988
APA StyleLi, P., & Han, H. (2025). On the Application of a Hybrid Incomplete Exponential Sum to Aperiodic Hamming Correlation of Some Frequency-Hopping Sequences. Entropy, 27(9), 988. https://doi.org/10.3390/e27090988