Disorder at the Synapse: How the Active Inference Framework Unifies Competing Perspectives on Depression
Abstract
1. Introduction
2. Depression as a Response to Environmental Stressors
3. Depression in the Brain and Body
4. Antidepressants and Their Effects on Monoaminergic Systems
5. Non-Medication Treatments
6. The Active Inference Framework
7. Model Confidence and Precision Weighting
8. An Active Inference Account of Depression
9. Depression as Synaptopathy
10. Treatments Target the Synapse
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lim, G.Y.; Tam, W.W.; Lu, Y.; Ho, C.S.; Zhang, M.W.; Ho, R.C. Prevalence of depression in the community from 30 countries between 1994 and 2014. Sci. Rep. 2018, 8, 2861. [Google Scholar] [CrossRef] [PubMed]
- Brody, D.J.; Pratt, L.A.; Hughes, J.P. Prevalence of Depression Among Adults Aged 20 and over: United States, 2013–2016; NCHS: Hyattsville, MD, USA, 2018; NCHS Data Brief No. 303. [Google Scholar]
- Richards, D. Prevalence and clinical course of depression: A review. Clin. Psychol. Rev. 2011, 31, 1117–1125. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, Y.; Ma, W.; Tong, Y.; Zheng, J. Temporal and spatial trend analysis of all-cause depression burden based on Global Burden of Disease (GBD) 2019 study. Sci. Rep. 2024, 14, 12346. [Google Scholar] [CrossRef]
- Gibson, Q.H. Interventionism and intelligibility: Why depression is not (always) a brain disease. J. Med. Philos. 2024, 49, 160–177. [Google Scholar] [CrossRef]
- Alegría, M.; NeMoyer, A.; Falgàs Bagué, I.; Wang, Y.; Alvarez, K. Social determinants of mental health: Where we are and where we need to go. Curr. Psychiatry Rep. 2018, 20, 95. [Google Scholar] [CrossRef] [PubMed]
- Ridley, M.; Rao, G.; Schilbach, F.; Patel, V. Poverty, depression, and anxiety: Causal evidence and mechanisms. Science 2020, 370, eaay0214. [Google Scholar] [CrossRef]
- Alon, N.; Macrynikola, N.; Jester, D.J.; Keshavan, M.; Reynolds, C.F.; Saxena, S.; Thomas, M.L.; Torous, J.; Jeste, D.V. Social determinants of mental health in major depressive disorder: Umbrella review of 26 meta-analyses and systematic reviews. Psychiatry Res. 2024, 335, 115854. [Google Scholar] [CrossRef]
- Cuijpers, P.; Karyotaki, E.; Ciharova, M.; Miguel, C.; Noma, H.; Furukawa, T.A. The effects of psychotherapies for depression on response, remission, reliable change, and deterioration: A meta-analysis. Acta Psychiatr. Scand. 2021, 144, 288–299. [Google Scholar] [CrossRef]
- Firth, J.; Solmi, M.; Wootton, R.E.; Vancampfort, D.; Schuch, F.B.; Hoare, E.; Gilbody, S.; Torous, J.; Teasdale, S.B.; Jackson, S.E.; et al. A meta-review of “lifestyle psychiatry”: The role of exercise, smoking, diet and sleep in the prevention and treatment of mental disorders. World Psychiatry 2020, 19, 360–380. [Google Scholar] [CrossRef]
- How Food May Improve Your Mood. Available online: https://www.nytimes.com/2021/05/06/well/eat/mental-health-food.html (accessed on 23 April 2025).
- Exercise Is Even More Effective Than Counselling or Medication for Depression. But How Much Do You Need? Available online: https://www.theguardian.com/lifeandstyle/2023/mar/02/exercise-is-even-more-effective-than-counselling-or-medication-for-depression-but-how-much-do-you-need (accessed on 23 April 2025).
- Brody, D.J.; Gu, Q. Antidepressant Use Among Adults: United States, 2015–2018; NCHS: Hyattsville, MD, USA, 2020; NCHS Data Brief No. 377. [Google Scholar]
- de Oliveira Costa, J.; Gillies, M.B.; Schaffer, A.L.; Peiris, D.; Zoega, H.; Pearson, S.A. Changes in antidepressant use in Australia: A nationwide analysis (2015–2021). Aust. New Zealand J. Psychiatry 2023, 57, 49–57. [Google Scholar] [CrossRef]
- ‘A Pill for Every Ill’: Doctors Say Australia Overprescribing Antidepressants to Mask Toxic Social Conditions. Available online: https://www.theguardian.com/australia-news/2024/dec/21/a-pill-for-every-ill-doctors-say-australia-overprescribing-antidepressants-to-mask-toxic-social-conditions (accessed on 23 April 2025).
- How Much Do Antidepressants Help, Really? Available online: https://www.nytimes.com/2022/04/21/well/antidepressants-ssri-effectiveness.html (accessed on 23 April 2025).
- Cipriani, A.; Furukawa, T.A.; Salanti, G.; Chaimani, A.; Atkinson, L.Z.; Ogawa, Y.; Leucht, S.; Ruhe, H.G.; Turner, E.H.; Higgins, J.P.T.; et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. Lancet 2018, 391, 1357–1366. [Google Scholar] [CrossRef]
- Undurraga, J.; Baldessarini, R.J. Randomized, placebo-controlled trials of antidepressants for acute major depression: Thirty-year meta-analytic review. Neuropsychopharmacology 2012, 37, 851–864. [Google Scholar] [CrossRef]
- Munkholm, K.; Paludan-Müller, A.S.; Boesen, K. Considering the methodological limitations in the evidence base of antidepressants for depression: A reanalysis of a network meta-analysis. BMJ Open 2019, 9, e024886. [Google Scholar] [CrossRef] [PubMed]
- Leucht, S.; Hierl, S.; Kissling, W.; Dold, M.; Davis, J.M. Putting the efficacy of psychiatric and general medicine medication into perspective: Review of meta-analyses. Br. J. Psychiatry 2012, 200, 97–106. [Google Scholar] [CrossRef]
- Berrios, G.E. Historical epistemology of the body-mind interaction in psychiatry. Dialogues Clin. Neurosci. 2018, 20, 5–13. [Google Scholar] [CrossRef]
- Friston, K. The free-energy principle: A unified brain theory. Nat. Rev. Neurosci. 2010, 11, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Parr, T.; Pezzulo, G.; Friston, K.J. Active Inference: The Free Energy Principle in Mind, Brain, and Behavior; The MIT Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Badcock, P.B.; Davey, C.G.; Whittle, S.; Allen, N.B.; Friston, K.J. The depressed brain: An evolutionary systems theory. Trends Cogn. Sci. 2017, 1, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Kendler, K.S.; Gardner, C.O. Depressive vulnerability, stressful life events and episode onset of major depression: A longitudinal model. Psychol. Med. 2016, 46, 1865–1874. [Google Scholar] [CrossRef]
- Kendler, K.S.; Karkowski, L.M.; Prescott, C.A. Causal relationship between stressful life events and the onset of major depression. Am. J. Psychiatry 1999, 156, 837–841. [Google Scholar] [CrossRef]
- Brody, D.; Hughes, J. Prevalence of Depression in Adolescents and Adults: United States, August 2021–August 2023; NCHS: Hyattsville, MD, USA, 2025; NCHS Data Brief No. 527. [Google Scholar] [CrossRef]
- Brown, J.; Cohen, P.; Johnson, J.G.; Smailes, E.M. Childhood abuse and neglect: Specificity of effects on adolescent and young adult depression and suicidality. J. Am. Acad. Child Adolesc. Psychiatry 1999, 38, 1490–1496. [Google Scholar] [CrossRef]
- Uhlhaas, P.J.; Davey, C.G.; Mehta, U.M.; Shah, J.; Torous, J.; Allen, N.B.; Avenevoli, S.; Bella-Awusah, T.; Chanen, A.; Chen, E.Y.H.; et al. Towards a youth mental health paradigm: A perspective and roadmap. Mol. Psychiatry 2023, 28, 3171–3181. [Google Scholar] [CrossRef]
- Blakemore, S.J.; Mills, K.L. Is adolescence a sensitive period for sociocultural processing? Annu. Rev. Psychol. 2014, 65, 187–207. [Google Scholar] [CrossRef] [PubMed]
- Davey, C.G.; Yucel, M.; Allen, N.B. The emergence of depression in adolescence: Development of the prefrontal cortex and the representation of reward. Neurosci. Biobehav. Rev. 2008, 32, 1–19. [Google Scholar] [CrossRef]
- Lamblin, M.; Murawski, C.; Whittle, S.; Fornito, A. Social connectedness, mental health and the adolescent brain. Neurosci. Biobehav. Rev. 2017, 80, 57–68. [Google Scholar] [CrossRef]
- Cacioppo, J.T.; Hughes, M.E.; Waite, L.J.; Hawkley, L.C.; Thisted, R.A. Loneliness as a specific risk factor for depressive symptoms: Cross-sectional and longitudinal analyses. Psychol. Aging 2006, 21, 140–151. [Google Scholar] [CrossRef]
- Van As, B.A.L.; Imbimbo, E.; Franceschi, A.; Menesini, E.; Nocentini, A. The longitudinal association between loneliness and depressive symptoms in the elderly: A systematic review. Int. Psychogeriatr. 2022, 34, 657–669. [Google Scholar] [CrossRef] [PubMed]
- Sutin, A.R.; Terracciano, A.; Milaneschi, Y.; An, Y.; Ferrucci, L.; Zonderman, A.B. The trajectory of depressive symptoms across the adult life span. JAMA Psychiatry 2013, 70, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Kendall, K.M.; Van Assche, E.; Andlauer, T.F.M.; Choi, K.W.; Luykx, J.J.; Schulte, E.C.; Lu, Y. The genetic basis of major depression. Psychol. Med. 2021, 51, 2217–2230. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P.F.; Daly, M.J.; O’Donovan, M. Genetic architectures of psychiatric disorders: The emerging picture and its implications. Nat. Rev. Genet. 2012, 13, 537–551. [Google Scholar] [CrossRef]
- LeMoult, J.; Humphreys, K.L.; Tracy, A.; Hoffmeister, J.A.; Ip, E.; Gotlib, I.H. Meta-analysis: Exposure to early life stress and risk for depression in childhood and adolescence. J. Am. Acad. Child Adolesc. Psychiatry 2020, 59, 842–855. [Google Scholar] [CrossRef]
- Golm, D.; Maughan, B.; Barker, E.D.; Hill, J.; Kennedy, M.; Knights, N.; Kreppner, J.; Kumsta, R.; Schlotz, W.; Rutter, M.; et al. Why does early childhood deprivation increase the risk for depression and anxiety in adulthood? A developmental cascade model. J. Child Psychol. Psychiatry 2020, 61, 1043–1053. [Google Scholar] [CrossRef] [PubMed]
- Monroe, S.M.; Rohde, P.; Seeley, J.R.; Lewinsohn, P.M. Life events and depression in adolescence: Relationship loss as a prospective risk factor for first onset of major depressive disorder. J. Abnorm. Psychol. 1999, 108, 606–614. [Google Scholar] [CrossRef]
- Kendler, K.S.; Thornton, L.M.; Gardner, C.O. Stressful life events and previous episodes in the etiology of major depression in women: An evaluation of the “kindling” hypothesis. Am. J. Psychiatry 2000, 157, 1243–1251. [Google Scholar] [CrossRef]
- Schmaal, L.; Veltman, D.J.; van Erp, T.G.; Sämann, P.G.; Frodl, T.; Jahanshad, N.; Loehrer, E.; Tiemeier, H.; Hofman, A.; Niessen, W.J.; et al. Subcortical brain alterations in major depressive disorder: Findings from the ENIGMA Major Depressive Disorder working group. Mol. Psychiatry 2016, 21, 806–812. [Google Scholar] [CrossRef]
- Schmaal, L.; Hibar, D.P.; Sämann, P.G.; Hall, G.B.; Baune, B.T.; Jahanshad, N.; Cheung, J.W.; van Erp, T.G.; Bos, D.; Ikram, M.A.; et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol. Psychiatry 2017, 22, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.P.; Müller, V.I.; Eickhoff, S.B.; Fox, P.T. Multimodal abnormalities of brain structure and function in major depressive disorder: A meta-analysis of neuroimaging studies. Am. J. Psychiatry 2020, 177, 422–434. [Google Scholar] [CrossRef] [PubMed]
- Müller, V.I.; Cieslik, E.C.; Serbanescu, I.; Laird, A.R.; Fox, P.T.; Eickhoff, S.B. Altered brain activity in unipolar depression revisited: Meta-analyses of neuroimaging studies. JAMA Psychiatry 2017, 74, 47. [Google Scholar] [CrossRef]
- MacQueen, G.; Frodl, T. The hippocampus in major depression: Evidence for the convergence of the bench and bedside in psychiatric research? Mol. Psychiatry 2011, 16, 252–264. [Google Scholar] [CrossRef]
- Tang, S.; Lu, L.; Zhang, L.; Hu, X.; Bu, X.; Li, H.; Hu, X.; Gao, Y.; Zeng, Z.; Gong, Q.; et al. Abnormal amygdala resting-state functional connectivity in adults and adolescents with major depressive disorder: A comparative meta-analysis. eBioMedicine 2018, 36, 436–445. [Google Scholar] [CrossRef]
- Fried, E.I.; Nesse, R.M. Depression is not a consistent syndrome: An investigation of unique symptom patterns in the STAR*D study. J. Affect. Disord. 2015, 172, 96–102. [Google Scholar] [CrossRef]
- First, M.B.; Williams, J.B.W.; Korg, R.S.; Spitzer, R.L. Structured Clinical Interview for DSM-5 Disorders–Research Version (SCID-5-RV); American Psychiatric Publishing: Arlington, VA, USA, 2015. [Google Scholar]
- Gold, P.W. The organization of the stress system and its dysregulation in depressive illness. Mol. Psychiatry 2015, 20, 32–47. [Google Scholar] [CrossRef]
- Berk, M.; Williams, L.J.; Jacka, F.N.; O’Neil, A.; Pasco, J.A.; Moylan, S.; Allen, N.B.; Stuart, A.L.; Hayley, A.C.; Byrne, M.L.; et al. So depression is an inflammatory disease, but where does the inflammation come from? BMC Med. 2013, 11, 200. [Google Scholar] [CrossRef]
- Alvares, G.A.; Quintana, D.S.; Hickie, I.B.; Guastella, A.J. Autonomic nervous system dysfunction in psychiatric disorders and the impact of psychotropic medications: A systematic review and meta-analysis. J. Psychiatry Neurosci. 2016, 41, 89–104. [Google Scholar] [CrossRef]
- Koch, C.; Wilhelm, M.; Salzmann, S.; Rief, W.; Euteneuer, F. A meta-analysis of heart rate variability in major depression. Psychol. Med. 2019, 49, 1948–1957. [Google Scholar] [CrossRef]
- Howard, D.M.; Adams, M.J.; Clarke, T.K.; Hafferty, J.D.; Gibson, J.; Shirali, M.; Coleman, J.R.I.; Hagenaars, S.P.; Ward, J.; Wigmore, E.M.; et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 2019, 22, 343–352. [Google Scholar] [CrossRef]
- Sorgdrager, F.J.H.; Doornbos, B.; Penninx, B.W.J.H.; de Jonge, P.; Kema, I.P. The association between the hypothalamic pituitary adrenal axis and tryptophan metabolism in persons with recurrent major depressive disorder and healthy controls. J. Affect. Disord. 2017, 222, 32–39. [Google Scholar] [CrossRef]
- Post, R.M.; Fleming, J.; Kapczinski, F. Neurobiological correlates of illness progression in the recurrent affective disorders. J. Psychiatr. Res. 2012, 46, 561–573. [Google Scholar] [CrossRef]
- Zeller, E.A.; Barsky, J. In vivo inhibition of liver and brain monoamine oxidase by 1-Isonicotinyl-2-isopropyl hydrazine. Proc. Soc. Exp. Biol. Med. 1952, 81, 459–461. [Google Scholar] [CrossRef] [PubMed]
- Axelrod, J.; Whitby, L.; Hertting, G. Effect of psychotropic drugs on the uptake of H3-norepinephrine by tissues. Science 1961, 133, 383–384. [Google Scholar] [CrossRef] [PubMed]
- Anderson, I.M. SSRIS versus tricyclic antidepressants in depressed inpatients: A meta-analysis of efficacy and tolerability. Depress. Anxiety 1998, 7 (Suppl. 1), 11–17. [Google Scholar] [CrossRef]
- Azizi, S.A. Monoamines: Dopamine, norepinephrine, and serotonin, beyond modulation, “switches” that alter the state of target networks. Neuroscientist 2022, 28, 121–143. [Google Scholar] [CrossRef]
- Hyttel, J. Pharmacological characterization of selective serotonin reuptake inhibitors (SSRIs). Int. Clin. Psychopharmacol. 1994, 9 (Suppl. 1), 19–26. [Google Scholar] [CrossRef]
- Artigas, F.; Nutt, D.J.; Shelton, R. Mechanism of action of antidepressants. Psychopharmacol. Bull. 2002, 36 (Suppl. 2), 123–132. [Google Scholar]
- Ang, B.; Horowitz, M.; Moncrieff, J. Is the chemical imbalance an ‘urban legend’? An exploration of the status of the serotonin theory of depression in the scientific literature. SSM-Ment. Health 2022, 2, 100098. [Google Scholar] [CrossRef]
- Moncrieff, J.; Cooper, R.E.; Stockmann, T.; Amendola, S.; Hengartner, M.P.; Horowitz, M.A. The serotonin theory of depression: A systematic umbrella review of the evidence. Mol. Psychiatry 2023, 28, 3243–3256. [Google Scholar] [CrossRef]
- Barth, J.; Munder, T.; Gerger, H.; Nüesch, E.; Trelle, S.; Znoj, H.; Jüni, P.; Cuijpers, P. Comparative efficacy of seven psychotherapeutic interventions for patients with depression: A network meta-analysis. PLoS Med. 2013, 10, e1001454. [Google Scholar] [CrossRef]
- Cuijpers, P.; van Straten, A.; Andersson, G.; van Oppen, P. Psychotherapy for depression in adults: A meta-analysis of comparative outcome studies. J. Consult. Clin. Psychol. 2008, 76, 909–922. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.H.; Beck, A.T. Cognitive therapy of depression: Theory and practice. Hosp. Community Psychiatry 1983, 34, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.T. Cognitive Therapy of Depression; Guilford Press: New York, NY, USA, 1979. [Google Scholar]
- Klerman, G.L.; Weissman, M.M.; Rounsaville, B.J.; Chevron, E.S. Interpersonal Psychotherapy of Depression; Basic Books: New York, NY, USA, 1984. [Google Scholar]
- Swainson, J.; Reeson, M.; Malik, U.; Stefanuk, I.; Cummins, M.; Sivapalan, S. Diet and depression: A systematic review of whole dietary interventions as treatment in patients with depression. J. Affect. Disord. 2023, 327, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Morres, I.D.; Hatzigeorgiadis, A.; Stathi, A.; Comoutos, N.; Arpin-Cribbie, C.; Krommidas, C.; Theodorakis, Y. Aerobic exercise for adult patients with major depressive disorder in mental health services: A systematic review and meta-analysis. Depress. Anxiety 2019, 36, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Vancampfort, D.; Correll, C.U.; Wampers, M.; Sienaert, P.; Mitchell, A.J.; De Herdt, A.; Probst, M.; Scheewe, T.W.; De Hert, M. Metabolic syndrome and metabolic abnormalities in patients with major depressive disorder: A meta-analysis of prevalences and moderating variables. Psychol. Med. 2014, 44, 2017–2028. [Google Scholar] [CrossRef]
- Teasdale, S.B.; Ward, P.B.; Rosenbaum, S.; Samaras, K.; Stubbs, B. Solving a weighty problem: Systematic review and meta-analysis of nutrition interventions in severe mental illness. Br. J. Psychiatry 2017, 210, 110–118. [Google Scholar] [CrossRef]
- Köhler-Forsberg, O.; Lydholm, C.N.; Hjorthøj, C.; Nordentoft, M.; Mors, O.; Benros, M.E. Efficacy of anti-inflammatory treatment on major depressive disorder or depressive symptoms: Meta-analysis of clinical trials. Acta Psychiatr. Scand. 2019, 139, 404–419. [Google Scholar] [CrossRef] [PubMed]
- Arteaga-Henríquez, G.; Simon, M.S.; Burger, B.; Weidinger, E.; Wijkhuijs, A.; Arolt, V.; Birkenhager, T.K.; Musil, R.; Müller, N.; Drexhage, H.A. Low-grade inflammation as a predictor of antidepressant and anti-inflammatory therapy response in MDD patients: A systematic review of the literature in combination with an analysis of experimental data collected in the EU-MOODINFLAME consortium. Front. Psychiatry 2019, 10, 114. [Google Scholar] [CrossRef] [PubMed]
- Von Helmholtz, H. Helmholtz’s Treatise on Physiological Optics; Optical Society of America: Rochester, NY, USA, 1925. [Google Scholar]
- Wiener, N. Cybernetics: Or Control and Communication in the Animal and the Machine; Technology Press: Cambridge, MA, USA, 1948. [Google Scholar]
- Rao, R.P.N.; Ballard, D.H. Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 1999, 2, 79–87. [Google Scholar] [CrossRef]
- Hinton, G.E.; Dayan, P.; Frey, B.J.; Neal, R.M. The “wake-sleep” algorithm for unsupervised neural networks. Science 1995, 268, 1158–1161. [Google Scholar] [CrossRef]
- Hawkins, J.; George, D.; Niemasik, J. Sequence memory for prediction, inference and behaviour. Phil. Trans. R. Soc. B 2009, 364, 1203–1209. [Google Scholar] [CrossRef]
- Hohwy, J. The Predictive Mind; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Barrett, L.F.; Simmons, W.K. Interoceptive predictions in the brain. Nat. Rev. Neurosci. 2015, 16, 419–429. [Google Scholar] [CrossRef]
- Stephan, K.E.; Manjaly, Z.M.; Mathys, C.D.; Weber, L.A.; Paliwal, S.; Gard, T.; Tittgemeyer, M.; Fleming, S.M.; Haker, H.; Seth, A.K.; et al. Allostatic self-efficacy: A metacognitive theory of dyshomeostasis-induced fatigue and depression. Front. Hum. Neurosci. 2016, 10, 550. [Google Scholar] [CrossRef]
- Seth, A.K.; Friston, K.J. Active interoceptive inference and the emotional brain. Phil. Trans. R. Soc. B 2016, 371, 20160007. [Google Scholar] [CrossRef] [PubMed]
- Davey, C.G. The body intervenes: How active inference explains depression’s clinical presentation. Neurosci. Biobehav. Rev. 2025, 175, 106229. [Google Scholar] [CrossRef] [PubMed]
- Seth, A. Being You: A New Science of Consciousness; Faber & Faber: London, UK, 2021. [Google Scholar]
- Smith, R.; Ramstead, M.J.D.; Kiefer, A. Active inference models do not contradict folk psychology. Synthese 2022, 200, 22. [Google Scholar] [CrossRef]
- Solms, M.; Friston, K. How and why consciousness arises: Some considerations from physics and physiology. J. Consc. Stud. 2018, 25, 202–238. [Google Scholar] [CrossRef]
- Marder, E. Neuromodulation of neuronal circuits: Back to the future. Neuron 2012, 76, 1–11. [Google Scholar] [CrossRef]
- Shaffer, C.; Westlin, C.; Quigley, K.S.; Whitfield-Gabrieli, S.; Barrett, L.F. Allostasis, action, and affect in depression: Insights from the theory of constructed emotion. Annu. Rev. Clin. Psychol. 2022, 18, 553–580. [Google Scholar] [CrossRef]
- Gupta, S.C.; Ravikrishnan, A.; Liu, J.; Mao, Z.; Pavuluri, R.; Hillman, B.G.; Gandhi, P.J.; Stairs, D.J.; Li, M.; Ugale, R.R.; et al. The NMDA receptor GluN2C subunit controls cortical excitatory-inhibitory balance, neuronal oscillations and cognitive function. Sci. Rep. 2016, 6, 38321. [Google Scholar] [CrossRef] [PubMed]
- Eiden, L.E.; Hernández, V.S.; Jiang, S.Z.; Zhang, L. Neuropeptides and small-molecule amine transmitters: Cooperative signaling in the nervous system. Cell. Mol. Life Sci. 2022, 79, 492. [Google Scholar] [CrossRef]
- Hayashi, Y. Molecular mechanism of hippocampal long-term potentiation-Towards multiscale understanding of learning and memory. Neurosci. Res. 2022, 175, 3–15. [Google Scholar] [CrossRef]
- Kirchner, L.; Eckert, A.-L.; Berg, M.; Endres, D.; Straube, B.; Rief, W. An active inference approach to interpersonal differences in depression. New Ideas Psychol. 2024, 74, 101092. [Google Scholar] [CrossRef]
- Clark, J.E.; Watson, S.; Friston, K.J. What is mood? A computational perspective. Psychol. Med. 2018, 48, 2277–2284. [Google Scholar] [CrossRef]
- Barrett, L.F.; Quigley, K.S.; Hamilton, P. An active inference theory of allostasis and interoception in depression. Phil. Trans. R. Soc. B 2016, 371, 20160011. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; Plomann, M.; Brundin, P. Huntington’s disease: A synaptopathy? Trends Mol. Med. 2003, 9, 414–420. [Google Scholar] [CrossRef]
- Bottemanne, H.; Mouchabac, S.; Gauld, C. Reshaping computational neuropsychiatry beyond synaptopathy. Brain 2025, 148, 1526–1530. [Google Scholar] [CrossRef] [PubMed]
- Friston, K. Computational psychiatry: From synapses to sentience. Mol. Psychiatry 2023, 28, 256–268. [Google Scholar] [CrossRef]
- Duman, R.S.; Aghajanian, G.K.; Sanacora, G.; Krystal, J.H. Synaptic plasticity and depression: New insights from stress and rapid-acting antidepressants. Nat. Med. 2016, 22, 238–249. [Google Scholar] [CrossRef]
- Chekroud, A.M. Unifying treatments for depression: An application of the Free Energy Principle. Front. Psychol. 2015, 6, 153. [Google Scholar] [CrossRef]
- Davey, C.G.; Harrison, B.J. The self on its axis: A framework for understanding depression. Transl. Psychiatry 2022, 12, 23. [Google Scholar] [CrossRef] [PubMed]
- Bordin, E.S. The generalizability of the psychoanalytic concept of the working alliance. Psychotherapy 1979, 16, 252–260. [Google Scholar] [CrossRef]
- Badcock, P.B.; Davey, C.G. Active inference in psychology and psychiatry: Progress to date? Entropy 2024, 26, 833. [Google Scholar] [CrossRef]
- Marx, W.; Lane, M.; Hockey, M.; Aslam, H.; Berk, M.; Walder, K.; Borsini, A.; Firth, J.; Pariante, C.M.; Berding, K.; et al. Diet and depression: Exploring the biological mechanisms of action. Mol. Psychiatry 2021, 26, 134–150. [Google Scholar] [CrossRef]
- Gee, B.; Orchard, F.; Clarke, E.; Joy, A.; Clarke, T.; Reynolds, S. The effect of non-pharmacological sleep interventions on depression symptoms: A meta-analysis of randomised controlled trials. Sleep Med. Rev. 2019, 43, 118–128. [Google Scholar] [CrossRef]
- Taylor, M.J.; Freemantle, N.; Geddes, J.R.; Bhagwagar, Z. Early onset of selective serotonin reuptake inhibitor antidepressant action: Systematic review and meta-analysis. Arch. Gen. Psychiatry 2006, 63, 1217–1223. [Google Scholar] [CrossRef]
- Mahar, I.; Bambico, F.R.; Mechawar, N.; Nobrega, J.N. Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci. Biobehav. Rev. 2014, 38, 173–192. [Google Scholar] [CrossRef]
- Kulikov, A.V.; Gainetdinov, R.R.; Ponimaskin, E.; Kalueff, A.V.; Naumenko, V.S.; Popova, N.K. Interplay between the key proteins of serotonin system in SSRI antidepressants efficacy. Expert Opin. Ther. Targets 2018, 22, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Kraus, C.; Castrén, E.; Kasper, S.; Lanzenberger, R. Serotonin and neuroplasticity-Links between molecular, functional and structural pathophysiology in depression. Neurosci. Biobehav. Rev. 2017, 77, 317–326. [Google Scholar] [CrossRef]
- Johansen, A.; Armand, S.; Plavén-Sigray, P.; Nasser, A.; Ozenne, B.; Petersen, I.N.; Keller, S.H.; Madsen, J.; Beliveau, V.; Møller, K.; et al. Effects of escitalopram on synaptic density in the healthy human brain: A randomized controlled trial. Mol. Psychiatry 2023, 28, 4272–4279. [Google Scholar] [CrossRef]
- Zhou, C.; Zhong, J.; Zou, B.; Fang, L.; Chen, J.; Deng, X.; Zhang, L.; Zhao, X.; Qu, Z.; Lei, Y.; et al. Meta-analyses of comparative efficacy of antidepressant medications on peripheral BDNF concentration in patients with depression. PLoS ONE 2017, 12, e0172270. [Google Scholar] [CrossRef] [PubMed]
- Tartt, A.N.; Mariani, M.B.; Hen, R.; Mann, J.J.; Boldrini, M. Dysregulation of adult hippocampal neuroplasticity in major depression: Pathogenesis and therapeutic implications. Mol. Psychiatry 2022, 27, 2689–2699. [Google Scholar] [CrossRef] [PubMed]
- Krystal, J.H.; Abdallah, C.G.; Sanacora, G.; Charney, D.S.; Duman, R.S. Ketamine: A paradigm shift for depression research and treatment. Neuron 2019, 101, 774–778. [Google Scholar] [CrossRef]
- Duman, R.S.; Sanacora, G.; Krystal, J.H. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron 2019, 102, 75–90. [Google Scholar] [CrossRef]
- Dunlop, B.W.; Cha, J.; Choi, K.S.; Rajendra, J.K.; Nemeroff, C.B.; Craighead, W.E.; Mayberg, H.S. Shared and unique changes in brain connectivity among depressed patients after remission with pharmacotherapy versus psychotherapy. Am. J. Psychiatry 2023, 180, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.W.T.; Kozak, Z. Therapeutic and structural dimensions in psychiatric prescribing: Bridging psychedelics and antidepressants. Harv. Rev. Psychiatry 2025, 33, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, I.; Sapirstein, G. Listening to Prozac but hearing placebo: A meta-analysis of antidepressant medication. Prev. Treat. 1998, 1, 2a. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davey, C.G.; Badcock, P.B. Disorder at the Synapse: How the Active Inference Framework Unifies Competing Perspectives on Depression. Entropy 2025, 27, 970. https://doi.org/10.3390/e27090970
Davey CG, Badcock PB. Disorder at the Synapse: How the Active Inference Framework Unifies Competing Perspectives on Depression. Entropy. 2025; 27(9):970. https://doi.org/10.3390/e27090970
Chicago/Turabian StyleDavey, Christopher G., and Paul B. Badcock. 2025. "Disorder at the Synapse: How the Active Inference Framework Unifies Competing Perspectives on Depression" Entropy 27, no. 9: 970. https://doi.org/10.3390/e27090970
APA StyleDavey, C. G., & Badcock, P. B. (2025). Disorder at the Synapse: How the Active Inference Framework Unifies Competing Perspectives on Depression. Entropy, 27(9), 970. https://doi.org/10.3390/e27090970