Infodemic Source Detection with Information Flow: Foundations and Scalable Computation †
Abstract
1. Introduction
2. Preliminary
2.1. SI Model
2.2. Fundamental Limitations of Conventional Estimators
3. Problem Formulation
3.1. Rate-Constrained Model
3.2. Network Links Model
4. Main Results
4.1. Rate-Constrained Source Selection Algorithms
Listing 1. Backward elimination algorithm. |
1 def feasible_source (A): |
2 if ρ(V,A) < r: return None |
3 S = V |
4 for u in V: |
5 if ρ(S\{u}, A) ≥ r: S = S\{u} |
6 return S |
Listing 2. Forward search algorithm. |
1 def approximate_rho (k): |
2 S, r, u = ∅, 0, None |
3 while |S| < k: |
4 for w in V\S: |
5 if ρ(S∪{w}, A) ≥ r: |
6 u, r = w, ρ(S∪{w}, A) |
7 S = S∪{u} |
8 return r |
4.2. Source Feasibility Under Multicast Rate Constraints
4.3. Computational and Structural Behavior of Lazy–Greedy Forward Search
Listing 3. Lazy–greedy forward search algorithm. |
1 def approximate_rho(k): |
2 S, r = ∅, 0 |
3 PQ = [(− ρ({W}, A), w) for w in V] |
4 heapify(PQ) |
5 while |S| < k and PQ ≠ ∅: |
6 g, w = heappop(PQ) |
7 if w ∈ S: continue |
8 Δ = ρ(S∪{w}, A)− r |
9 if Δ < −g: |
10 heappush(PQ, (−Δ, w)) |
11 continue |
12 S = S∪{w} |
13 r = r + Δ |
14 return r |
- Efficiency: The primary advantage of the lazy–greedy algorithm is its efficiency in terms of the computational cost. By caching the marginal gains and only recomputing them when necessary, the lazy–greedy algorithm reduces the number of oracle calls and heap operations compared to the original greedy approach. While the greedy algorithm evaluates every node in in each iteration, the lazy–greedy algorithm evaluates only those nodes that are most likely to provide the largest marginal gain, reducing unnecessary computations.
- Time Complexity: The original greedy algorithm has a time complexity of because it must evaluate all nodes in during each iteration. In contrast, the lazy–greedy version has , where is the number of times node w is evaluated.
- Approximation Guarantee: Both the greedy and lazy–greedy algorithms maintain the same approximation factor of when is submodular, as demonstrated by Proposition 5.
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Proof of Proposition 1
Appendix B. Proof of Proposition 2
Appendix C. Proof of Proposition 3
- Step 1: Decomposition using event equivalence. The event is equivalent to the joint occurrence of the event in which the first k infected nodes from the set S and the observation time t fall between the infection times of the k-th and -th nodes. Therefore, we can rewrite the probability as
- Step 2: Chain rule factorization. Applying the chain rule, we separate the probability into two terms:
- Step 3: Taking the supremum over t. We now take the supremum over all observation times . Since the first term does not depend on t, the supremum only affects the second term:
Appendix D. Proof of Corollary 1
Appendix E. Proof of Proposition 4
Appendix F. Proof of Proposition 5
References
- Khan, M.S.S. A computer virus propagation model using delay differential equations with probabilistic contagion and immunity. Int. J. Comput. Netw. Commun. 2014, 6, 111. [Google Scholar] [CrossRef]
- Ai, J.; Wang, T. Exploring Cyber Risk Contagion-A Boundless Threat. Variance 2023, 16, 1. [Google Scholar]
- Tiwary, B.K. Computational medicine: Quantitative modeling of complex diseases. Briefings Bioinform. 2019, 21, 429–440. [Google Scholar] [CrossRef]
- Zhao, J.; Cheong, K.H. Enhanced epidemic control: Community-based observer placement and source tracing. IEEE Trans. Syst. Man Cybern. Syst. 2025, 55, 2747–2758. [Google Scholar] [CrossRef]
- Chierichetti, F.; Lattanzi, S.; Panconesi, A. Rumor spreading in social networks. Theor. Comput. Sci. 2011, 412, 2602–2610. [Google Scholar] [CrossRef]
- Jin, R.; Wu, W. Schemes of propagation models and source estimators for rumor source detection in online social networks: A short survey of a decade of research. Discret. Math. Algorithms Appl. 2021, 13, 2130002. [Google Scholar] [CrossRef]
- He, Q.; Zhang, S.; Cai, Y.; Yuan, W.; Ma, L.; Yu, K. A survey on exploring real and virtual social network rumors: State-of-the-art and research challenges. ACM Comput. Surv. 2025, 57, 1–37. [Google Scholar] [CrossRef]
- Shelke, S.; Attar, V. Source detection of rumor in social network–a review. Online Soc. Netw. Media 2019, 9, 30–42. [Google Scholar] [CrossRef]
- Ahmad, T.; Faisal, M.S.; Rizwan, A.; Alkanhel, R.; Khan, P.W.; Muthanna, A. Efficient fake news detection mechanism using enhanced deep learning model. Appl. Sci. 2022, 12, 1743. [Google Scholar] [CrossRef]
- Shao, C.; Ciampaglia, G.L.; Varol, O.; Yang, K.C.; Flammini, A.; Menczer, F. The spread of low-credibility content by social bots. Nat. Commun. 2018, 9, 4787. [Google Scholar] [CrossRef]
- Do Nascimento, I.J.B.; Pizarro, A.B.; Almeida, J.M.; Azzopardi-Muscat, N.; Gonçalves, M.A.; Björklund, M.; Novillo-Ortiz, D. Infodemics and health misinformation: A systematic review of reviews. Bull. World Health Organ. 2022, 100, 544. [Google Scholar] [CrossRef]
- Cremer, F.; Sheehan, B.; Fortmann, M.; Kia, A.N.; Mullins, M.; Murphy, F.; Materne, S. Cyber risk and cybersecurity: A systematic review of data availability. Geneva Pap. Risk Insurance. Issues Pract. 2022, 47, 698. [Google Scholar] [CrossRef]
- Bailey, N.T.J. The Mathematical Theory of Infectious Diseases and Its Applications, 2nd ed.; Charles Griffin & Company Ltd.: Bucks, UK, 1975; pp. xvi + 413. [Google Scholar]
- Shah, D.; Zaman, T. Rumors in a Network: Who’s the Culprit? IEEE Trans. Inf. Theory 2011, 57, 5163–5181. [Google Scholar] [CrossRef]
- MacKay, D.J.C. Information Theory, Inference & Learning Algorithms; Cambridge University Press: New York, NY, USA, 2003. [Google Scholar]
- Shah, D.; Zaman, T. Rumor centrality: A universal source detector. SIGMETRICS Perform. Eval. Rev. 2012, 40, 199–210. [Google Scholar] [CrossRef]
- Athreya, K.B.; Ney, P.E. Multi-Type Branching Processes. In Branching Processes; Springer: Berlin/Heidelberg, Germany, 1972; pp. 181–228. [Google Scholar]
- Yu, P.D.; Tan, C.W.; Fu, H.L. Epidemic Source Detection in Contact Tracing Networks: Epidemic Centrality in Graphs and Message-Passing Algorithms. IEEE J. Sel. Top. Signal Process. 2022, 16, 234–249. [Google Scholar] [CrossRef]
- Tan, C.W.; Yu, P.D. Contagion Source Detection in Epidemic and Infodemic Outbreaks: Mathematical Analysis and Network Algorithms. Found. Trends Netw. 2023, 13, 107–251. [Google Scholar] [CrossRef]
- Fan, T.H.; Wang, I.H. Rumor Source Detection: A Probabilistic Perspective. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 4159–4163. [Google Scholar] [CrossRef]
- Ahlswede, R.; Cai, N.; Li, S.Y.; Yeung, R.W. Network information flow. IEEE Trans. Inf. Theory 2000, 46, 1204–1216. [Google Scholar] [CrossRef]
- Li, S.Y.; Yeung, R.; Cai, N. Linear network coding. IEEE Trans. Inf. Theory 2003, 49, 371–381. [Google Scholar] [CrossRef]
- Koetter, R.; Medard, M. An algebraic approach to network coding. IEEE/ACM Trans. Netw. 2003, 11, 782–795. [Google Scholar] [CrossRef]
- Jaggi, S.; Sanders, P.; Chou, P.; Effros, M.; Egner, S.; Jain, K.; Tolhuizen, L. Polynomial time algorithms for multicast network code construction. IEEE Trans. Inf. Theory 2005, 51, 1973–1982. [Google Scholar] [CrossRef]
- Harvey, N.; Kleinberg, R.; Lehman, A. On the capacity of information networks. IEEE Trans. Inf. Theory 2006, 52, 2345–2364. [Google Scholar] [CrossRef]
- Ho, T.; Medard, M.; Koetter, R.; Karger, D.; Effros, M.; Shi, J.; Leong, B. A Random Linear Network Coding Approach to Multicast. IEEE Trans. Inf. Theory 2006, 52, 4413–4430. [Google Scholar] [CrossRef]
- Schrijver, A. Combinatorial Optimization: Polyhedra and Efficiency; Springer: Berlin/Heidelberg, Germany, 2003; Volume 24. [Google Scholar]
- Yeung, R.W. Information Theory and Network Coding; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Zhang, Z.; Yeung, R. On characterization of entropy function via information inequalities. IEEE Trans. Inf. Theory 1998, 44, 1440–1452. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, Z.; Zhou, Q.; Tan, C.W.; Chan, C. Infodemic Source Detection: Enhanced Formulations with Information Flow. In Proceedings of the 2024 IEEE International Symposium on Information Theory (ISIT), Athens, Greece, 7–12 July 2024; pp. 3291–3296. [Google Scholar] [CrossRef]
- Goemans, M.X.; Iwata, S.; Zenklusen, R. A flow model based on polylinking system. Math. Program. 2012, 135, 1–23. [Google Scholar] [CrossRef]
- Schrijver, A. Matroids and linking systems. J. Comb. Theory, Ser. B 1979, 26, 349–369. [Google Scholar] [CrossRef][Green Version]
- Chan, C.; Shum, K.W.; Sun, Q.T. Combinatorial flow over cyclic linear networks. In Proceedings of the 2013 IEEE Information Theory Workshop (ITW), Sevilla, Spain, 9–13 September 2013; pp. 1–5. [Google Scholar]
- Chan, C. Matroidal undirected network. In Proceedings of the 2012 IEEE International Symposium on Information Theory Proceedings, Cambridge, MA, USA, 1–6 July 2012; pp. 1498–1502. [Google Scholar]
- Nemhauser, G.L.; Wolsey, L.A.; Fisher, M.L. An analysis of approximations for maximizing submodular set functions—I. Math. Program. 1978, 14, 265–294. [Google Scholar] [CrossRef]
- Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
- Renyi, E. On random graph. Publ. Math. 1959, 6, 290–297. [Google Scholar]
- Erdos, P.; Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 1960, 5, 17–60. [Google Scholar]
- Krause, A.; Golovin, D. Submodular function maximization. Tractability 2014, 3, 3. [Google Scholar]
Graph | Target Rate | Feasible | Set Size | Source Set |
---|---|---|---|---|
BA | 0.5 | Yes | 1 | {19} |
BA | 1.0 | Yes | 1 | {19} |
BA | 2.0 | Yes | 1 | {18} |
BA | 3.0 | Yes | 3 | {17, 18, 19} |
BA | 6.0 | Yes | 5 | {11, 12, 15, 17, 18} |
WS | 0.5 | Yes | 1 | {17} |
WS | 1.0 | Yes | 1 | {17} |
WS | 2.0 | Yes | 2 | {11, 16} |
WS | 3.0 | Yes | 3 | {10, 11, 13} |
WS | 6.0 | No | – | – |
ER | 0.5 | Yes | 1 | {17} |
ER | 1.0 | Yes | 1 | {17} |
ER | 2.0 | Yes | 1 | {17} |
ER | 3.0 | Yes | 3 | {16, 18, 19} |
ER | 6.0 | No | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhao, C.; Zhou, Q.; Tan, C.W.; Chan, C. Infodemic Source Detection with Information Flow: Foundations and Scalable Computation. Entropy 2025, 27, 936. https://doi.org/10.3390/e27090936
Wang Z, Zhao C, Zhou Q, Tan CW, Chan C. Infodemic Source Detection with Information Flow: Foundations and Scalable Computation. Entropy. 2025; 27(9):936. https://doi.org/10.3390/e27090936
Chicago/Turabian StyleWang, Zimeng, Chao Zhao, Qiaoqiao Zhou, Chee Wei Tan, and Chung Chan. 2025. "Infodemic Source Detection with Information Flow: Foundations and Scalable Computation" Entropy 27, no. 9: 936. https://doi.org/10.3390/e27090936
APA StyleWang, Z., Zhao, C., Zhou, Q., Tan, C. W., & Chan, C. (2025). Infodemic Source Detection with Information Flow: Foundations and Scalable Computation. Entropy, 27(9), 936. https://doi.org/10.3390/e27090936