Modeling the Evolution of Dynamic Triadic Closure Under Superlinear Growth and Node Aging in Citation Networks
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Description
2.2. Model
- Initial network: The process begins with a fully connected network of nodes, ensuring that each edge is initially part of a triangle.
- Growth mechanism: At each discrete time step t, the network grows by introducing new nodes. Each new node selects m existing edges according to Equation (3), under the constraint that the selected edges must have pairwise-disjoint endpoints. The new node then connects to both endpoints of each chosen edge, thereby forming exactly m new triangles. This rule enforces structural consistency and prevents the creation of multi-edges.
- Fallback rule: If the network at time t contains fewer than m usable edges, it is impossible for each new node to attach to m disjoint edges. In this case, a fallback mechanism is applied: each new node instead attaches randomly to exactly one existing node. Under this mode, new edges are added but no new triangles are formed. This ensures continuous network expansion even under structural constraints.
- Termination: The process stops once the total number of nodes reaches the predefined size N.
Algorithm 1: TEM-SGA: Triangular Evolutionary Model of Superlinear Growth and Aging |
3. Results and Discussion
3.1. Network Topology
3.2. Empirical Validation of Structural Features in Citation Networks
4. Degenerate Model
4.1. Degree Distribution
4.1.1. Network Growth and Average Degree
Remark (Model Detail)
4.1.2. Node Degree Dynamics
4.1.3. Solving for
4.1.4. Deriving the Degree Distribution
4.2. Generalized Degree Distribution
4.2.1. Dynamics of Edge Triangle Count
4.2.2. Birth Time Distribution of Edges
4.2.3. Distribution of
4.3. Verification of Theoretical Predictions
5. Conclusions
5.1. Limitations
5.2. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TEM-SGA | Triangular Evolutionary Model of Superlinear Growth and Aging |
TEM-SG | Triangular Evolutionary Model of Superlinear Growth |
ACC | Average Clustering Coefficient |
BA | Barabási–Albert Model |
HK | Holme–Kim Model |
KE-D | Klemm–Eguíluz Deactivation Model |
LC | Li–Chen Model |
References
- Yu, D.; Pan, T.; Xu, Z.; Yager, R.R. Exploring the knowledge diffusion and research front of OWA operator: A main path analysis. Artif. Intell. Rev. 2023, 56, 12233–12255. [Google Scholar] [CrossRef]
- Filippi-Mazzola, E.; Wit, E.C. A stochastic gradient relational event additive model for modelling U.S. patent citations from 1976 to 2022. J. R. Stat. Soc. C Appl. Stat. 2024, 73, 1008–1024. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, Q.; Song, C.; Song, M. Mining the evolutionary process of knowledge through multiple relationships between keywords. Scientometrics 2022, 127, 2023–2053. [Google Scholar] [CrossRef]
- Small, M.; Li, Y.; Stemler, T.; Judd, K. Growing optimal scale-free networks via likelihood. Phys. Rev. E 2015, 91, 042801. [Google Scholar] [CrossRef]
- Long, Y.; Jia, Z. A novel neighbor-preferential growth scale-free network model and its properties. Commun. Netw. 2017, 9, 111–119. [Google Scholar] [CrossRef]
- Yu, X.; Li, Z.; Zhang, D.; Liang, F.; Wang, X.Y.; Wu, X. The topology of an accelerated-growth network. J. Phys. A Math. Gen. 2006, 39, 14343–14349. [Google Scholar] [CrossRef]
- Dorogovtsev, S.N.; Mendes, J.F. Evolution of networks. Adv. Phys. 2002, 51, 1079–1187. [Google Scholar] [CrossRef]
- Vazquez, A. Statistics of citation networks. arXiv 2001, arXiv:cond-mat/0105031. [Google Scholar] [CrossRef]
- Krapivsky, P.L.; Redner, S. Network growth by copying. Phys. Rev. E 2005, 71, 036118. [Google Scholar] [CrossRef]
- Dorogovtsev, S.N.; Mendes, J.F.F. Effect of the accelerating growth of communications networks on their structure. Phys. Rev. E 2001, 63, 025101. [Google Scholar] [CrossRef]
- Smith, D.M.; Onnela, J.-P.; Johnson, N.F. Accelerating networks. New J. Phys. 2007, 9, 181. [Google Scholar] [CrossRef]
- Barabási, A.-L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Kuang, L.; Zheng, B.; Li, D.; Li, Y.; Sun, Y. A fractal and scale-free model of complex networks with hub attraction behaviors. Sci. China Inf. Sci. 2015, 58, 102301. [Google Scholar] [CrossRef]
- Dorogovtsev, S.N.; Mendes, J.F. Scaling properties of scale-free evolving networks: Continuous approach. Phys. Rev. E 2001, 63, 056125. [Google Scholar] [CrossRef]
- Jung, S.; Kim, S.; Kahng, B. Geometric fractal growth model for scale-free networks. Phys. Rev. E 2002, 65, 056101. [Google Scholar] [CrossRef]
- Li, X.; Chen, G. A local-world evolving network model. Physica A 2003, 328, 274–286. [Google Scholar] [CrossRef]
- Song, C.; Havlin, S.; Makse, H.A. Origins of fractality in the growth of complex networks. Nat. Phys. 2006, 2, 275–281. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Chen, Y.; Chen, X.; Zhou, Z.; Yang, Z.; Zhang, C.-J. Modeling complex networks with accelerating growth and aging effect. Phys. Lett. A 2019, 383, 1396–1400. [Google Scholar] [CrossRef]
- Wang, M.; Yu, G.; Yu, D. Measuring the preferential attachment mechanism in citation networks. Physica A 2008, 387, 4692–4698. [Google Scholar] [CrossRef]
- Sen, P. Directed accelerated growth: Application in citation networks. Physica A 2005, 346, 139–146. [Google Scholar] [CrossRef]
- Hajra, K.B.; Sen, P. Modelling aging characteristics in citation networks. Physica A 2006, 368, 575–582. [Google Scholar] [CrossRef]
- Verstak, A.; Acharya, A.; Suzuki, H.; Henderson, S.; Iakhiaev, M.; Lin, C.C.Y.; Shetty, N. On the shoulders of giants: The growing impact of older articles. arXiv 2014, arXiv:1411.0275. [Google Scholar] [CrossRef]
- Hu, F.; Ma, L.; Zhan, X.X.; Zhou, Y.; Liu, C.; Zhao, H.; Zhang, Z.-K. The aging effect in evolving scientific citation networks. Scientometrics 2021, 126, 4297–4309. [Google Scholar] [CrossRef]
- Wang, D.; Song, C.; Barabási, A.-L. Quantifying long-term scientific impact. Science 2013, 342, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Varol, O.; Barabási, A.-L. Hidden citations obscure true impact in science. PNAS Nexus 2024, 3, pgae155. [Google Scholar] [CrossRef]
- Lerner, J.; Hâncean, M.G.; Lomi, A. Relational hyperevent models for the coevolution of coauthoring and citation networks. J. R. Stat. Soc. A Stat. Soc. 2025, 188, 583–607. [Google Scholar] [CrossRef]
- Davidsen, J.; Ebel, H.; Bornholdt, S. Emergence of a small world from local interactions: Modeling acquaintance networks. Phys. Rev. Lett. 2002, 88, 128701. [Google Scholar] [CrossRef]
- Holme, P.; Kim, B.J. Growing scale-free networks with tunable clustering. Phys. Rev. E 2002, 65, 026107. [Google Scholar] [CrossRef]
- Bianconi, G.; Darst, R.K.; Iacovacci, J.; Fortunato, S. Triadic closure as a basic generating mechanism of communities in complex networks. Phys. Rev. E 2014, 90, 042806. [Google Scholar] [CrossRef]
- Kunegis, J.; Karimi, F.; Jun, S. The problem of action at a distance in networks and the emergence of preferential attachment from triadic closure. J. Interdiscip. Methodol. Issues Sci. 2017, 2, 3. [Google Scholar]
- Estrada, E.; Arrigo, F. Predicting triadic closure in networks using communicability distance functions. SIAM J. Appl. Math. 2015, 75, 1725–1744. [Google Scholar] [CrossRef]
- Fang, Z.; Tang, J. Uncovering the formation of triadic closure in social networks. In Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI-15), Buenos Aires, Argentina, 25–31 July 2015; pp. 2062–2068. [Google Scholar]
- Cirigliano, L.; Castellano, C.; Baxter, G.J.; Timár, G. Strongly clustered random graphs via triadic closure: An exactly solvable model. Phys. Rev. E 2024, 109, 024306. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.J.; Wu, Z.X.; Wang, Y.-H. Evolution of weighted networks with exponential aging of sites. Chin. Phys. Lett. 2005, 22, 1548–1551. [Google Scholar] [CrossRef]
- Dorogovtsev, S.N.; Mendes, J.F.F. Evolution of networks with aging of sites. Phys. Rev. E 2000, 62, 1842–1845. [Google Scholar] [CrossRef]
- Rossi, R.A.; Ahmed, N.K. The Network Data Repository with interactive graph analytics and visualization. In Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI-15), Austin, TX, USA, 25–30 January 2015; pp. 4292–4293. Available online: https://networkrepository.com (accessed on 6 August 2025).
- Klemm, K.; Eguiluz, V.M. Highly clustered scale-free networks. Phys. Rev. E 2002, 65, 036123. [Google Scholar] [CrossRef]
- Albert, R.; Barabási, A.-L. Topology of evolving networks: Local events and universality. Phys. Rev. Lett. 2000, 85, 5234–5237. [Google Scholar] [CrossRef]
- Albert, R.; Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47–97. [Google Scholar] [CrossRef]
- Courtney, O.T.; Bianconi, G. Weighted growing simplicial complexes. Phys. Rev. E 2017, 95, 062301. [Google Scholar] [CrossRef]
- Kojaku, S.; Mahari, R.; Lera, S.C.; Moro, E.; Pentland, A.; Ahn, Y.-Y. Community-centric modeling of citation dynamics explains collective citation patterns in science, law, and patents. arXiv 2025, arXiv:2501.15552. [Google Scholar]
- Kovalenko, K.; Sendiña-Nadal, I.; Khalil, N.; Dainiak, A.; Musatov, D.; Raigorodskii, A.M.; Boccaletti, S. Growing scale-free simplices. Commun. Phys. 2021, 4, 43. [Google Scholar] [CrossRef]
Symbol | Description |
---|---|
Number of nodes in the initial fully connected graph. | |
N | Total number of nodes when the network evolution ends. |
t | Discrete time step. |
Growth exponent in the node-arrival process . | |
Aging rate controlling the decay of node attractiveness. | |
m | Number of base edges selected by each new node. |
Attractiveness of node at time t. | |
Number of nodes present in the network at time step t. | |
the edge set at time t when used inside sums ( ); the number of edges when used as a scalar in growth/ODE expressions. | |
Edge triangle mass | |
Number of triangles at time t (so that ). | |
Explicit notation for the edge set at time t | |
Set of neighboring nodes of node i. | |
Triangle-based weight incident to node i | |
Degree of node at time t. | |
Number of triangles that include edge at time t. | |
Average degree of the network at time step t. | |
Probability that edge is selected as a base edge by a new node at time t. |
Segment | Baseline | Log–MSE | |
---|---|---|---|
1930–1952 | Exponential | 0.095 | 0.570 |
Linear | 0.057 | 0.744 | |
Superlinear | 2.997 | ||
1952–1995 | Exponential | 0.076 | 0.871 |
Linear | 3.723 | ||
Superlinear | 1.072 | ||
1995–2020 | Exponential | 0.737 | |
Linear | 10.800 | ||
Superlinear | 0.038 | 0.533 |
Model | ACC | |||
---|---|---|---|---|
DBLP (Dataset) | - | - | - | 0.1200 |
BA | 3 | - | - | 0.0058 |
HK () | 3 | - | - | 0.1051 |
HK () | 3 | - | - | 0.3852 |
KE-D () | 3 | - | - | 0.7668 |
KE-D () | 3 | - | - | 0.7366 |
LC () | 3 | - | - | 0.0079 |
LC () | 5 | - | - | 0.0067 |
TEM-SGA | 3 | 2.0 | 0.0 | 0.2039 |
3 | 1.0 | 0.0 | 0.1831 | |
3 | 4.0 | 0.0 | 0.2735 | |
4 | 2.0 | 0.0 | 0.1595 | |
3 | 2.0 | 0.2 | 0.1581 | |
3 | 2.8 | 0.1 | 0.1849 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, L.; Liu, H.; Gong, S.-C. Modeling the Evolution of Dynamic Triadic Closure Under Superlinear Growth and Node Aging in Citation Networks. Entropy 2025, 27, 915. https://doi.org/10.3390/e27090915
Liang L, Liu H, Gong S-C. Modeling the Evolution of Dynamic Triadic Closure Under Superlinear Growth and Node Aging in Citation Networks. Entropy. 2025; 27(9):915. https://doi.org/10.3390/e27090915
Chicago/Turabian StyleLiang, Li, Hao Liu, and Shi-Cai Gong. 2025. "Modeling the Evolution of Dynamic Triadic Closure Under Superlinear Growth and Node Aging in Citation Networks" Entropy 27, no. 9: 915. https://doi.org/10.3390/e27090915
APA StyleLiang, L., Liu, H., & Gong, S.-C. (2025). Modeling the Evolution of Dynamic Triadic Closure Under Superlinear Growth and Node Aging in Citation Networks. Entropy, 27(9), 915. https://doi.org/10.3390/e27090915