Performance Analysis of Non-Orthogonal Multiple Access-Enhanced Autonomous Aerial Vehicle-Assisted Internet of Vehicles over Rician Fading Channels
Abstract
1. Introduction
2. V2X Communication Model
3. Total Achievable Rate Analysis
3.1. Accurate Analytical Expression
3.2. Approximate Expression and Approximate Error
- BER Assumption: In our analysis, we assume no bit errors during transmission, as the system operates under ideal conditions with perfect coding and decoding techniques [10]. This assumption is common in capacity analysis, especially in high SNR scenarios or with strong error correction methods such as LDPC or Turbo codes. Therefore, we do not include a detailed analysis of BER in this work, as the primary focus is on optimizing the total achievable rate.
- Delay Assumption: The delay in our model is related to the size of the data packets and determined by the transmission rate [16]. We assume that the transmission delay is inversely related to the achievable rate. In other words, maximizing the total achievable rate naturally reduces transmission delay. Since the main objective of our study is to optimize the achievable rate, delay is indirectly considered.
4. Performance Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daini, C.; Monache, M.L.D.; Goatin, P.; Ferrara, A. Traffic control via fleets of connected and automated vehicles. IEEE Trans. Intell. Transp. Syst. 2024, 26, 1573–1582. [Google Scholar] [CrossRef]
- Huang, Y.; Su, J.; Lu, X.; Huang, S.; Zhu, H.; Zeng, H. Deep Reinforcement Learning-Based Resource Allocation for UAV-GAP Downlink Cooperative NOMA in IIoT Systems. Entropy 2025, 27, 811. [Google Scholar] [CrossRef]
- Ye, S.; Wu, Q.; Fan, P.; Fan, Q. A Survey on Semantic Communications in Internet of Vehicles. Entropy 2025, 27, 445. [Google Scholar] [CrossRef]
- He, Y.; Huang, F.; Wang, D.; Zhou, X.; Zhang, R. Uplink Outage Probability Analysis of AAV and Intelligent Connected Vehicle Cooperative Communication Using Full-Duplex MIMO. IEEE Commun. Lett. 2025. early access. [Google Scholar] [CrossRef]
- He, Y.; Huang, F.; Wang, D.; Zhang, R. Outage Probability Analysis of MISO-NOMA Downlink Communications in UAV-Assisted Agri-IoT With SWIPT and TAS Enhancement. IEEE Trans. Netw. Sci. Eng. 2025, 12, 2151–2164. [Google Scholar] [CrossRef]
- Jiang, K.; Cao, X.; Song, W.; Jiang, Q. DRL-Based Multidimensional Resource Scheduling for Intelligent Connected Vehicles in UAV-Assisted VEC Systems. IEEE Sens. J. 2025, 25, 13871–13883. [Google Scholar] [CrossRef]
- Hamissi, A.; Dhraief, A.; Sliman, L. A comprehensive survey on conflict detection and resolution in unmanned aircraft system traffic management. IEEE Trans. Intell. Transp. Syst. 2025, 26, 1395–1418. [Google Scholar] [CrossRef]
- Gao, H. Research on Computation Offloading and Resource Allocation Strategy Based on MADDPG for Integrated Space-Air-Marine Network. Entropy 2025, 27, 803. [Google Scholar] [CrossRef]
- Ban, H.; Pan, J.; Wang, Z.; Cui, R.; Ming, Y.; Jiang, Q. Error-Constrained Entropy-Minimizing Strategies for Multi-UAV Deception Against Networked Radars. Entropy 2025, 27, 653. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, Y.; Dai, L.; Bashir, A.K.; Nallanathan, A.; Shim, B. Performance analysis of FD-NOMA-based decentralized V2X systems. IEEE Trans. Commun. 2019, 67, 5024–5036. [Google Scholar] [CrossRef]
- Zhan, Y.; Hong, Y.; Li, D.; Luo, C.; Fan, X. Joint Optimization of DCCR and Energy Efficiency in Active STAR-RIS-Assisted UAV-NOMA Networks. Drones 2025, 9, 520. [Google Scholar] [CrossRef]
- Chen, Z.; Li, X.; Zhu, S. Optimization of Robust and Secure Transmit Beamforming for Dual-Functional MIMO Radar and Communication Systems. Remote Sens. 2025, 17, 816. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Zhao, X.; Du, F.; Zhang, Y.; Fu, Z.; Jiang, J.; Xin, P. Energy-minimization resource allocation for FD-NOMA enabled integrated sensing, communication, and computation in PIoT. IEEE Trans. Netw. Sci. Eng. 2024, 11, 5863–5877. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Z.; Yang, W.; Zhao, H.; He, Y.; Li, L.; Wei, Z.; Zhou, F. Enhanced ISAC Framework for Moving Target Assisted by Beyond-Diagonal RIS: Accurate Localization and Efficient Communication. IEEE Trans. Netw. Sci. Eng. 2025, 12, 4299–4315. [Google Scholar] [CrossRef]
- Khan, W.U.; Javed, M.A.; Nguyen, T.N.; Khan, S.; Elhalawany, B.M. Energy-Efficient Resource Allocation for 6G Backscatter-Enabled NOMA IoV Networks. IEEE Trans. Intell. Transp. Syst. 2022, 23, 9775–9785. [Google Scholar] [CrossRef]
- He, L.; Wen, M.; Chen, Y.; Yan, M.; Jiao, B. Delay Aware Secure Offloading for NOMA-Assisted Mobile Edge Computing in Internet of Vehicles. IEEE Trans. Commun. 2022, 70, 5271–5284. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, Y.; Dai, L.; Bashir, A.K.; Nallanathan, A.; Shim, B. Performance analysis of decentralized V2X system with FD-NOMA. In Proceedings of the IEEE Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–6. [Google Scholar]
- Huang, Q.; Song, Z.; Xiong, Z.; Xu, G.; Zhao, N.; Niyato, D. Joint resource and trajectory optimization in active IRS-aided UAV relaying networks. IEEE Trans. Wireless Commun. 2024, 23, 13082–13094. [Google Scholar] [CrossRef]
- He, Y.; Huang, F.; Wang, D.; Chen, B.; Li, T.; Zhang, R. Performance analysis and optimization design of AAV-assisted vehicle platooning in NOMA-enhanced Internet of Vehicles. IEEE Trans. Intell. Transp. Syst. 2025, 26, 8810–8819. [Google Scholar] [CrossRef]
- Adam, A.B.M.; Muthanna, M.S.A.; Muthanna, A.; Nguyen, T.N.; El-Latif, A.A.A. Toward smart traffic management with 3D placement optimization in UAV-assisted NOMA IIoT networks. IEEE Trans. Intell. Transp. Syst. 2023, 24, 15448–15458. [Google Scholar] [CrossRef]
- Li, J.; Wang, D.; Zhao, H.; Jin, Y.; He, Y.; Zhou, F.; Wei, Z.; Leung, V.C.M. Enhancing Secrecy Energy Efficiency in UAV-RIS Assisted Mobile IoV Networks Through DRL. IEEE Trans. Wirel. Commun. 2025. early access. [Google Scholar] [CrossRef]
- Huang, R.; Wen, W.; Chen, X.; Zhou, Z.; Chen, Q.; Dong, C. Joint Power Allocation and Task Replication for Reliability-Sensitive Services in NOMA-Enabled Vehicular Edge Computing. IEEE Trans. Veh. Technol. 2024, 73, 4178–4193. [Google Scholar] [CrossRef]
- Xu, Y.-H.; Li, J.-H.; Zhou, W.; Chen, C. Learning-empowered resource allocation for air slicing in UAV-assisted cellular V2X communications. IEEE Syst. J. 2023, 17, 1008–1011. [Google Scholar] [CrossRef]
- Li, M.; Xue, K.; Chen, W.; Han, Z. Secure performance of RIS-aided NOMA in cognitive V2X networks with imperfect CSI over double Rayleigh fading. IEEE Trans. Cogn. Commun. Netw. 2024, 10, 1339–1355. [Google Scholar] [CrossRef]
- Mao, Y.; Yang, X.; Wang, L.; Wang, D.; Alfarraj, O.; Yu, K.; Mumtaz, S.; Yu, F.R. A high-capacity MAC protocol for UAV-enhanced RIS-assisted V2X architecture in 3-D IoT traffic. IEEE Internet Things J. 2024, 11, 23711–23726. [Google Scholar] [CrossRef]
- Nie, X.; Wang, C.; Zhou, T.; Zhou, Q.; Zhu, X.; Zhang, J. Mobility-Aware Cooperative Caching in IoVs Based on Secure Asynchronous Federated and Deep Reinforcement Learning. IEEE Internet Things J. 2025, 12, 20572–20588. [Google Scholar] [CrossRef]
- Chen, X.; Feng, Z.; Zhang, J.A.; Wei, Z.; Yuan, X.; Zhang, P.; Peng, J. Downlink and uplink cooperative joint communication and sensing. IEEE Trans. Veh. Technol. 2024, 73, 11318–11332. [Google Scholar] [CrossRef]
- Jain, A.P.; Joshi, S. UAV-enabled D2D vehicular communication network: Link selection and outage analysis. In Proceedings of the IEEE Vehicular Technology Conference (VTC2024-Spring), Singapore, 24–27 June 2024; pp. 1–5. [Google Scholar]
- Wang, D.; Li, J.; Lv, Q.; He, Y.; Li, L.; Hua, Q.; Alfarraj, O.; Zhang, J. Integrating Reconfigurable Intelligent Surface and AAV for Enhanced Secure Transmissions in IoT-Enabled RSMA Networks. IEEE Internet Things J. 2025, 12, 9405–9419. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, B.; Nan, R.; Chi, K.; Wu, Y. Attention-based SIC ordering and power allocation for non-orthogonal multiple access networks. IEEE Trans. Mobile Comput. 2025, 24, 939–955. [Google Scholar] [CrossRef]
- Chopra, G.; Rani, S.; Viriyasitavat, W.; Dhiman, G.; Kaur, A.; Vimal, S. UAV-assisted partial co-operative NOMA-based resource allocation in CV2X and TinyML-based use case scenario. IEEE Internet Things J. 2024, 11, 21402–21410. [Google Scholar] [CrossRef]
- Huang, J.; Lai, X.; Yang, F.; Zhang, N.; Niyato, D.; Jiang, W. Ellipsoid-Based Learning for Robust Resource Allocation With Differentiated QoS in Massive Internet of Vehicles Networks. IEEE Trans. Veh. Technol. 2025, 74, 11425–11435. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Z.; Yu, K.; Wei, Z.; Zhao, H.; Al-Dhahir, N.; Guizani, M.; Leung, V.C.M. Active aerial reconfigurable intelligent surface assisted secure communications: Integrating sensing and positioning. IEEE J. Sel. Areas Commun. 2024, 42, 2769–2785. [Google Scholar] [CrossRef]
- Kokare, M.B.; R, S.; Gautam, S. Performance Analysis and Optimization with Deep Learning Assessment of Multi-IRS-Aided IoV Network. IEEE Internet Things J. 2025, 12, 11581–11599. [Google Scholar] [CrossRef]
- Alfattani, S.; Jaafar, W.; Yanikomeroglu, H.; Yongaçoglu, A. Multimode high-altitude platform stations for next-generation wireless networks: Selection mechanism, benefits, and potential challenges. IEEE Veh. Technol. Mag. 2023, 18, 20–28. [Google Scholar] [CrossRef]
- He, Y.; Huang, F.; Wang, D.; Zhang, R.; Gu, X.; Pan, J. NOMA-Enhanced Cooperative Relaying Systems in Drone-Enabled IoV: Capacity Analysis and Height Optimization. IEEE Trans. Veh. Technol. 2024, 73, 19065–19079. [Google Scholar] [CrossRef]
Parameter | Definition |
---|---|
U | Number of autonomous aerial vehicles (AAVs) |
V | Number of intelligent connected vehicles (ICVs) |
S | Number of source nodes (SNs) |
D | Number of destination nodes (DNs) |
Downlink channel matrix between S SNs and D DNs | |
Channel matrix from S SNs to the d-th SN | |
Downlink channel fading coefficient from the s-th SN to the d-th DN | |
Downlink received signal | |
Downlink power matrix | |
Downlink transmission signal matrix | |
Downlink noise matrix | |
Downlink noise power | |
Identity matrix | |
Uplink transmission signal matrix | |
Uplink noise matrix | |
Uplink noise power | |
Total achievable rate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; He, Y.; Lei, Y.; Cai, Z.; Huang, F.; Zhao, X.; Wang, D.; Li, L. Performance Analysis of Non-Orthogonal Multiple Access-Enhanced Autonomous Aerial Vehicle-Assisted Internet of Vehicles over Rician Fading Channels. Entropy 2025, 27, 907. https://doi.org/10.3390/e27090907
Zhang Z, He Y, Lei Y, Cai Z, Huang F, Zhao X, Wang D, Li L. Performance Analysis of Non-Orthogonal Multiple Access-Enhanced Autonomous Aerial Vehicle-Assisted Internet of Vehicles over Rician Fading Channels. Entropy. 2025; 27(9):907. https://doi.org/10.3390/e27090907
Chicago/Turabian StyleZhang, Zheming, Yixin He, Yifan Lei, Zehui Cai, Fanghui Huang, Xingchen Zhao, Dawei Wang, and Lujuan Li. 2025. "Performance Analysis of Non-Orthogonal Multiple Access-Enhanced Autonomous Aerial Vehicle-Assisted Internet of Vehicles over Rician Fading Channels" Entropy 27, no. 9: 907. https://doi.org/10.3390/e27090907
APA StyleZhang, Z., He, Y., Lei, Y., Cai, Z., Huang, F., Zhao, X., Wang, D., & Li, L. (2025). Performance Analysis of Non-Orthogonal Multiple Access-Enhanced Autonomous Aerial Vehicle-Assisted Internet of Vehicles over Rician Fading Channels. Entropy, 27(9), 907. https://doi.org/10.3390/e27090907