Two-Step Estimation Procedure for Parametric Copula-Based Regression Models for Semi-Competing Risks Data
Abstract
:1. Introduction
2. Data
3. Methods
3.1. The Copula-Based Model Specifications
- (i)
- Clayton copula:
- (ii)
- Frank copula:
- (iii)
- Gumbel copula:
- (iv)
- Normal copula:
3.2. The Parametric Model for Event to Time
3.3. Joint Likelihood Function
3.4. Estimation
Algorithm 1 Two-step estimation procedure. |
Step 1: Estimate the parameters of marginal distributions and copula function separately.
|
4. Application
4.1. Hazard Ratios and Associations
4.2. Results for the Preferred Model
5. Simulation Study
5.1. Design
5.2. Performance Measures
5.3. Results
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fine, J.; Jiang, H.; Chappell, R. On semi-competing risks data. Biometrika 2001, 88, 907–919. [Google Scholar] [CrossRef]
- Xu, J.; Kalbfleisch, J.D.; Tai, B. Statistical analysis of illness–death processes and semicompeting risks data. Biometrics 2010, 66, 716–725. [Google Scholar] [CrossRef] [PubMed]
- Shih, J.; Louis, T. Inferences on the association parameter in copula models for bivariate survival data. Biometrics 1995, 51, 1384–1399. [Google Scholar] [CrossRef]
- Ramadan, D.A.; Hasaballah, M.M.; Abd-Elwaha, N.K.; Alshangiti, A.M.; Kamel, M.I.; Balogun, O.S.; El-Awady, M.M. Bayesian and Non-Bayesian Inference to Bivariate Alpha Power Burr-XII Distribution with Engineering Application. Axioms 2024, 13, 796. [Google Scholar] [CrossRef]
- Fayomi, A.; Almetwally, E.M.; Qura, M.E. A novel bivariate Lomax-G family of distributions: Properties, inference, and applications to environmental, medical, and computer science data. AIMS Math. 2023, 8, 17539–17584. [Google Scholar] [CrossRef]
- Haj Ahmad, H.; Almetwally, E.M.; Ramadan, D.A. Investigating the relationship between processor and memory reliability in data science: A bivariate model approach. Mathematics 2023, 11, 2142. [Google Scholar] [CrossRef]
- Jiang, H.; Fine, J.; Kosork, M.; Chappell, R. Pseudo self-consistent estimation of a copula model with informative censoring. Scand. J. Stat. 2005, 32, 1–20. [Google Scholar] [CrossRef]
- Peng, L.; Fine, J. Regression modeling of semicompeting risks data. Biometrics 2007, 63, 96–108. [Google Scholar] [CrossRef]
- Hsieh, J.; Huang, Y. Regression analysis based on conditional likelihood approach under semi-competing risks data. Lifetime Data Anal. 2012, 18, 302–320. [Google Scholar] [CrossRef]
- Chen, Y. Maximum likelihood analysis of semicompeting risks data with semiparametric regression models. Lifetime Data Anal. 2012, 18, 36–57. [Google Scholar] [CrossRef]
- Arachchige, S.; Chen, X.; Zhou, Q. Two-stage pseudo maximum likelihood estimation of semiparametric copula-based regression models for semi-competing risks data. Lifetime Data Anal. 2025, 31, 52–75. [Google Scholar] [CrossRef]
- Sun, T.; Li, Y.; Xiao, Z.; Ding, Y.; Wang, X. Semiparametric copula method for semi-competing risks data subject to interval censoring and left truncation: Application to disability in elderly. Stat. Methods Med. Res. 2023, 32, 656–670. [Google Scholar] [CrossRef] [PubMed]
- Powell, M. The BOBYQA Algorithm for Bound Constrained Optimization Without Derivatives; Cambridge NA Report NA2009/06; University of Cambridge: Cambridge, UK, 2009; Volume 26, pp. 26–46. [Google Scholar]
- Ragonneau, T. Model-Based Derivative-Free Optimization Methods and Software. Ph.D. Thesis, Hong Kong Polytechnic University, Hong Kong, China, 2023. [Google Scholar]
- Deresa, N.; Ingrid, V.; Katrien, A. Copula-based inference for bivariate survival data with left truncation and dependent censoring. Insur. Math. Econ. 2022, 107, 1–21. [Google Scholar] [CrossRef]
- Czado, C.; Keilegom, I. Dependent censoring based on parametric copulas. Biometrika 2023, 110, 721–738. [Google Scholar] [CrossRef]
- Geskus, R. On the inclusion of prevalent cases in HIV/AIDS natural history studies through a marker-based estimate of time since seroconversion. Stat. Med. 2000, 19, 1753–1769. [Google Scholar] [CrossRef] [PubMed]
- Geskus, R.; Miedema, F.; Goudsmit, J.; Reiss, P.; Schuitemaker, H.; Coutinho, R. Prediction of residual time to AIDS and death based on markers and cofactors. JAIDS 2003, 32, 514–521. [Google Scholar] [CrossRef]
- Sorrell, L.; Wei, Y.; Wojtyś, M.; Rowe, P. Estimating the correlation between semi-competing risk survival endpoints. Biom. J. 2022, 64, 131–145. [Google Scholar] [CrossRef]
- Patton, A. Modelling asymmetric exchange rate dependence. Int. Econ. Rev. 2006, 47, 527–556. [Google Scholar] [CrossRef]
- Nelsen, R. An Introduction to Copulas, 2nd ed.; Springer Science & Business Medias: New York, NY, USA, 2006. [Google Scholar]
- Schepsmeier, U.; Jakob, S. Derivatives and Fisher information of bivariate copulas. Stat. Pap. 2014, 55, 525–542. [Google Scholar] [CrossRef]
- Wei, Y.; Wojtyś, M.; Sorrell, L.; Rowe, P. Bivariate copula regression models for semi-competing risks. Stat. Methods Med. Res. 2023, 32, 1902–1918. [Google Scholar] [CrossRef]
- Sun, T.; Ding, Y. CopulaCenR: Copula based Regression Models for Bivariate Censored Data in R. R J. 2020, 12, 266–282. [Google Scholar] [CrossRef]
- Powell, M. Large-Scale Nonlinear Optimization, 1st ed.; Springer Sciencet & Business Media: New York, NY, USA, 2006; pp. 255–297. [Google Scholar]
- Xie, P.; Yuan, Y. Derivative-Free Optimization with Transformed Objective Functions and the Algorithm Based on the Least Frobenius Norm Updating Quadratic Model. J. Oper. Res. Soc. China 2024, 1–37. [Google Scholar] [CrossRef]
- Ragonneau, T.; Zhang, Z. PDFO: A cross-platform package for Powell’s derivative-free optimization solvers. Math. Prog. Comp. 2024, 16, 535–559. [Google Scholar] [CrossRef]
- Nash, J.C.; Varadhan, R. Unifying optimization algorithms to aid software system users: Optimx for R. J. Stat. Softw. 2011, 43, 1–14. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; Foundation for Statistical Computing: Vienna, Austria, 2013; pp. 1613–1619. [Google Scholar]
- Eugen-Olsen, J.; Iversen, A.K.; Garred, P.; Koppelhus, U.; Benfield, T.L.; Sorensen, A.M.; Katzenstein, T.; Dickmeiss, E.; Gerstoft, J.; Skinhøj, P.; et al. Heterozygosity for a deletion in the CKR-5 gene leads to prolonged AIDS-free survival and slower CD4 T-cell decline in a cohort of HIV-seropositive individuals. Aids 1997, 11, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wells, M. Model selection and semiparametric inference for bivariate failure-time data. J. Am. Stat. Assoc. 2000, 95, 62–72. [Google Scholar] [CrossRef]
- Zhu, H.; Lan, Y.; Ning, J.; Shen, Y. Semiparametric copula-based regression modeling of semi-competing risks data. Commun. Stat.-Theory Methods 2021, 51, 7830–7845. [Google Scholar] [CrossRef]
- Chen, M.; Karen, B. A diagnostic for association in bivariate survival models. Lifetime Data Anal. 2005, 11, 245–264. [Google Scholar] [CrossRef]
- Quintero, F.O.L.; Contreras-Reyes, J.E.; Wiff, R. Incorporating uncertainty into a length-based estimator of natural mortality in fish populations. Fish. Bull. 2017, 115, 355–364. [Google Scholar] [CrossRef]
- Rios, L.; Sahinidis, N. Derivative-free optimization: A review of algorithms and comparison of software implementations. J. Glob. Optim. 2013, 56, 1247–1293. [Google Scholar] [CrossRef]
- Sun, T.; Ding, Y. Copula-based semiparametric regression method for bivariate data under general interval censoring. Biostatistics 2021, 22, 315–330. [Google Scholar] [CrossRef] [PubMed]
- Fine, J.; Yan, J.; Kosorok, M. Temporal process regression. Biometrika 2004, 91, 683–703. [Google Scholar] [CrossRef]
Variable | Values |
---|---|
SI Status | |
Switch No switch | 113 (34.9%) 211 (65.1%) |
Mortality | |
Death No Death | 178 (54.9%) 146 (45.1%) |
CCR5 Genotype † | |
WW (Wild Wild) WM (Wild Mutant) | 259 (79.9%) 65 (20.1%) |
Age (years) | |
Median (range) Mean (variance) | 34.2 (19–58) 34.7 (53.4) |
Method | Initialization | Algorithm | Procedure |
---|---|---|---|
TStage-BFGS | Grid search | L-BFGS-B | Two-Stage |
TStep-BFGS | TStage-BFGS result | L-BFGS-B | Two-Step |
TStage-BOBYQA | Grid search | BOBYQA | Two-Stage |
TStep-BOBYQA | TStage-BOBYQA result | BOBYQA | Two-Step |
Marginal Distribution | Method/Covariate | Hazard Ratio (95% CI) | Regression Coefficients on Copula Parameter (95% CI) | AIC | |
---|---|---|---|---|---|
SI Switch | Death | ||||
Exponential distribution | TStage-BFGS | 326.599 | |||
Age | 1.529 (−0.024, 3.082) | 2.040 (0.418, 3.662) | −0.202 (−2.083, 1.680) | ||
CCR5 type: WM | 0.826 (0.446, 1.205) | 0.496 (0.279, 0.714) | 1.283 (0.452, 2.114) | ||
TStep-BFGS | 319.340 | ||||
Age | 1.635 (0.194, 3.075) | 1.775 (0.415, 3.135) | 0.082 (−1.639, 1.803) | ||
CCR5 type: WM | 0.738 (0.440, 1.035) | 0.521 (0.310, 0.732) | 0.804 (0.039, 1.569) | ||
TStage-BOBYQA | 326.599 | ||||
Age | 1.529 (−0.024, 3.082) | 2.040 (0.418, 3.662) | −0.202 (−1.200, 0.796) | ||
CCR5 type: WM | 0.826 (0.446, 1.205) | 0.496 (0.279, 0.714) | 1.283 (0.978, 1.588) | ||
TStep-BOBYQA | 319.340 | ||||
Age | 1.635 (0.194, 3.075) | 1.775 (0.415, 3.135) | 0.081 (−1.640, 1.802) | ||
CCR5 type: WM | 0.738 (0.440, 1.035) | 0.521 (0.310, 0.732) | 0.804 (0.039, 1.569) | ||
Weibull distribution | TStage-BFGS | 256.229 | |||
Age | 2.718 (−0.270, 5.706) | 3.719 (0.659, 6.778) | 0.364 (−1.656, 2.384) | ||
CCR5 type: WM | 1.000 (0.514, 1.486) | 0.404 (0.226, 0.582) | 1.397 (0.447, 2.347) | ||
TStep-BFGS | 256.229 | ||||
Age | 2.718 (−0.374, 5.810) | 3.719 (0.669, 6.768) | 0.364 (−1.935, 2.663) | ||
CCR5 type: WM | 1.000 (0.462, 1.538) | 0.404 (0.231, 0.577) | 1.397 (0.265, 2.528) | ||
TStage-BOBYQA | 250.411 | ||||
Age | 2.718 (0.024, 5.413) | 3.719 (0.659, 6.778) | 0.235 (−0.558, 1.028) | ||
CCR5 type: WM | 1.000 (0.561, 1.439) | 0.404 (0.226, 0.582) | 1.329 (0.975, 1.683) | ||
TStep-BOBYQA | 250.411 | ||||
Age | 2.718 (0.041, 5.395) | 3.719 (0.723, 6.715) | 0.235 (−1.791, 2.261) | ||
CCR5 type: WM | 1.000 (0.545, 1.455) | 0.404 (0.231, 0.577) | 1.329 (0.353, 2.305) | ||
Gompertz distribution | TStage-BFGS | 257.348 | |||
Age | 1.708 (−0.051, 3.468) | 3.708 (0.645, 6.771) | 0.484 (−1.384, 2.351) | ||
CCR5 type: WM | 0.781 (0.420, 1.143) | 0.400 (0.224, 0.576) | 1.229 (0.363, 2.095) | ||
TStep-BFGS | − | ||||
Age | 39,610.734 (39,610.734, 39,610.734) | 3,269,017.372 (3,269,017.372, 3,269,017.372) | 15.000 (15.000, 15.000) | ||
CCR5 type: WM | 492.465 (492.465, 492.465) | 3,269,017.372 (3,269,017.372, 3,269,017.372) | 15.000 (15.000, 15.000) | ||
TStage-BOBYQA | 257.348 | ||||
Age | 1.708 (−0.051, 3.468) | 3.708 (0.645, 6.771) | 0.484 (−0.406, 1.373) | ||
CCR5 type: WM | 0.781 (0.420, 1.143) | 0.400 (0.224, 0.576) | 1.229 (0.853, 1.606) | ||
TStep-BOBYQA | 252.517 | ||||
Age | 2.172 (0.092, 4.251) | 3.393 (0.632, 6.155) | 0.662 (−1.178, 2.502) | ||
CCR5 type: WM | 0.707 (0.402, 1.013) | 0.400 (0.228, 0.573) | 1.025 (0.161, 1.888) |
Marginal Distribution | Method/Covariate | Hazard Ratio (95% CI) | Regression Coefficients on Copula Parameter (95% CI) | AIC | |
---|---|---|---|---|---|
SI Switch | Death | ||||
Exponential distribution | TStage-BFGS | 325.685 | |||
Age | 1.529 (−0.024, 3.082) | 2.040 (0.418, 3.662) | −2.017 (−9.359, 5.324) | ||
CCR5 type: WM | 0.826 (0.446, 1.205) | 0.496 (0.279, 0.714) | 5.742 (0.220, 11.264) | ||
TStep-BFGS | 314.003 | ||||
Age | 1.422 (0.174, 2.671) | 1.611 (0.357, 2.864) | −1.074 (−10.917, 8.769) | ||
CCR5 type: WM | 0.705 (0.425, 0.986) | 0.523 (0.316, 0.729) | 4.079 (−1.632, 9.787) | ||
TStage-BOBYQA | 325.685 | ||||
Age | 1.529 (−0.024, 3.082) | 2.040 (0.418, 3.662) | −2.017 (−2.060, −1.974) | ||
CCR5 type: WM | 0.826 (0.446, 1.205) | 0.496 (0.279, 0.714) | 5.742 (5.742, 5.742) | ||
TStep-BOBYQA | 314.003 | ||||
Age | 1.423 (0.174, 2.672) | 1.612 (0.357, 2.866) | −1.085 (−10.927, 8.757) | ||
CCR5 type: WM | 0.706 (0.425, 0.986) | 0.523 (0.316, 0.729) | 4.086 (−1.630, 9.802) | ||
Weibull distribution | TStage-BFGS | 253.969 | |||
Age | 2.718 (−0.270, 5.706) | 3.719 (0.659, 6.778) | 0.795 (−4.983, 6.573) | ||
CCR5 type: WM | 1.000 (0.514, 1.486) | 0.404 (0.226, 0.582) | 3.538 (−0.294, 7.371) | ||
TStep-BFGS | 253.969 | ||||
Age | 2.718 (−0.433, 5.870) | 3.719 (0.529, 6.908) | 0.795 (−5.999, 7.589) | ||
CCR5 type: WM | 1.000 (0.488, 1.512) | 0.404 (0.230, 0.578) | 3.538 (−0.746, 7.822) | ||
TStage-BOBYQA | 247.748 | ||||
Age | 2.718 (0.024, 5.413) | 3.719 (0.659, 6.778) | 0.873 (0.806, 0.939) | ||
CCR5 type: WM | 1.000 (0.561, 1.439) | 0.404 (0.226, 0.582) | 3.433 (3.433, 3.433) | ||
TStep-BOBYQA | 247.748 | ||||
Age | 2.718 (0.052, 5.385) | 3.719 (0.581, 6.856) | 0.873 (−5.731, 7.476) | ||
CCR5 type: WM | 1.000 (0.564, 1.436) | 0.404 (0.230, 0.578) | 3.433 (−0.564, 7.431) | ||
Gompertz distribution | TStage-BFGS | 254.023 | |||
Age | 1.709 (−0.051, 3.468) | 3.708(0.645, 6.771) | 0.979(−5.248, 7.205) | ||
CCR5 type: WW | 0.781 (0.420, 1.143) | 0.400 (0.224, 0.576) | 3.011 (−0.783, 6.805) | ||
TStep-BFGS | 249.938 | ||||
Age | 1.943 (0.121, 3.76) | 2.924 (0.474, 5.374) | 2.629 (−4.556, 9.814) | ||
CCR5 type: WW | 0.722 (0.422, 1.023) | 0.405 (0.234, 0.576) | 2.679 (−1.160, 6.519) | ||
TStage-BOBYQA | 254.024 | ||||
Age | 1.708 (−0.051, 3.468) | 3.708 (0.645, 6.771) | 0.978 (0.851, 1.105) | ||
CCR5 type: WW | 0.781 (0.420, 1.143) | 0.400 (0.224, 0.576) | 3.011 (3.011, 3.011) | ||
TStep-BOBYQA | 249.938 | ||||
Age | 1.943 (0.122, 3.765) | 2.922 (0.474, 5.370) | 2.653 (−4.532, 9.839) | ||
CCR5 type: WW | 0.722 (0.421, 1.023) | 0.405 (0.234, 0.576) | 2.688 (−1.155, 6.531) |
Marginal Distribution | Method/Covariate | Hazard Ratio (95% CI) | Regression Coefficients on Copula Parameter (95% CI) | AIC | |
---|---|---|---|---|---|
SI Switch | Death | ||||
Exponential distribution | TStage-BFGS | 330.925 | |||
Age | 1.529 (−0.024, 3.082) | 2.040 (0.418, 3.662) | 0.194 (−2.026, 2.414) | ||
CCR5 type: WM | 0.826 (0.446, 1.205) | 0.496 (0.279, 0.714) | 1.180 (0.389, 1.971) | ||
TStep-BFGS | 323.343 | ||||
Age | 1.780 (0.263, 3.297) | 1.882 (0.404, 3.359) | 0.600 (−1.301, 2.501) | ||
CCR5 type: WM | 0.757 (0.452, 1.063) | 0.504 (0.296, 0.713) | 0.847 (0.134, 1.560) | ||
TStage-BOBYQA | 330.925 | ||||
Age | 1.529 (−0.024, 3.082) | 2.040 (0.418, 3.662) | 0.194 (−0.405, 0.794) | ||
CCR5 type: WM | 0.826 (0.446, 1.205) | 0.496 (0.279, 0.714) | 1.180 (0.313, 2.047) | ||
TStep-BOBYQA | 323.343 | ||||
Age | 1.780 (0.263, 3.297) | 1.882 (0.404, 3.359) | 0.600 (−1.301, 2.502) | ||
CCR5 type: WM | 0.757 (0.452, 1.063) | 0.504 (0.296, 0.713) | 0.847 (0.134, 1.560) | ||
Weibull distribution | TStage-BFGS | 251.986 | |||
Age | 2.718 (−0.270, 5.706) | 3.719 (0.659, 6.778) | −0.112 (−2.204, 1.980) | ||
CCR5 type: WM | 1.000 (0.514, 1.486) | 0.404 (0.226, 0.582) | 1.026 (0.195, 1.856) | ||
TStep-BFGS | 251.986 | ||||
Age | 2.718 (−0.102, 5.538) | 3.719 (0.701, 6.737) | −0.112 (−2.275, 2.051) | ||
CCR5 type: WM | 1.000 (0.525, 1.475) | 0.404 (0.231, 0.576) | 1.026 (0.147, 1.905) | ||
TStage-BOBYQA | 247.238 | ||||
Age | 2.718 (0.024, 5.413) | 3.719 (0.659, 6.778) | −0.150 (−0.511, 0.212) | ||
CCR5 type: WM | 1.000 (0.561, 1.439) | 0.404 (0.226, 0.582) | 0.846 (0.479, 1.213) | ||
TStep-BOBYQA | 247.238 | ||||
Age | 2.718 (0.177, 5.259) | 3.719 (0.718, 6.720) | −0.150 (−2.169, 1.870) | ||
CCR5 type: WM | 1.000 (0.571, 1.429) | 0.404 (0.230, 0.578) | 0.846 (0.015, 1.676) | ||
Gompertz distribution | TStage-BFGS | 254.501 | |||
Age | 1.709 (−0.051, 3.468) | 3.708 (0.645, 6.771) | 0.258 (−1.569, 2.086) | ||
CCR5 type: WW | 0.781(0.420, 1.143) | 0.400(0.224, 0.576) | 0.804 (0.065, 1.542) | ||
TStep-BFGS | 252.165 | ||||
Age | 2.075 (0.187, 3.964) | 3.461 (0.627, 6.294) | 0.490 (−1.294, 2.274) | ||
CCR5 type: WW | 0.715 (0.411, 1.019) | 0.408 (0.235, 0.581) | 0.670 (−0.059, 1.399) | ||
TStage-BOBYQA | 254.502 | ||||
Age3 | 1.708 (−0.051, 3.468) | 3.708(0.645, 6.771) | 0.258 (−0.167, 0.684) | ||
CCR5 type: WW | 0.781 (0.420, 1.143) | 0.400 (0.224, 0.576) | 0.804 (0.438, 1.169) | ||
TStep-BOBYQA | 252.165 | ||||
Age | 2.074 (0.186, 3.962) | 3.458 (0.626, 6.290) | 0.487 (−1.297, 2.272) | ||
CCR5 type: WW | 0.715 (0.411, 1.019) | 0.408 (0.235, 0.581) | 0.670 (−0.059, 1.399) |
Marginal Distribution | Method/Covariate | Hazard Ratio (95% CI) | Regression Coefficients on Copula Parameter (95% CI) | AIC | |
---|---|---|---|---|---|
SI Switch | Death | ||||
Exponential distribution | TStage-BFGS | 323.288 | |||
Age | 1.529 (−0.024, 3.082) | 2.040 (0.418, 3.662) | 0.143 (−0.859, 1.145) | ||
CCR5 type: WM | 0.826 (0.446, 1.205) | 0.496 (0.279, 0.714) | 0.644 (0.222, 1.066) | ||
TStep-BFGS | 313.698 | ||||
Age | 1.668 (0.222, 3.114) | 1.822 (0.409, 3.235) | 0.165 (−0.882, 1.213) | ||
CCR5 type: WM | 0.735 (0.439, 1.030) | 0.506 (0.299, 0.714) | 0.426 (0.000, 0.852) | ||
TStage-BOBYQA | 323.288 | ||||
Age | 1.529 (−0.024, 3.082) | 2.040 (0.418, 3.662) | 0.143 (−0.859, 1.145) | ||
CCR5 type: WM | 0.826 (0.446, 1.205) | 0.496 (0.279, 0.714) | 0.644 (0.222, 1.066) | ||
TStep-BOBYQA | 313.698 | ||||
Age | 1.668 (0.222, 3.114) | 1.822 (0.409, 3.235) | 0.165 (−0.882, 1.213) | ||
CCR5 type: WM | 0.735 (0.439, 1.030) | 0.506 (0.299, 0.714) | 0.426 (0.000, 0.852) | ||
Weibull distribution | TStage-BFGS | 249.868 | |||
Age | 2.718 (−0.270, 5.706) | 3.719 (0.659, 6.778) | 0.042 (−0.852, 0.936) | ||
CCR5 type: WM | 1.000 (0.514, 1.486) | 0.404 (0.226, 0.582) | 0.517 (0.086, 0.947) | ||
TStep-BFGS | 249.868 | ||||
Age | 2.718 (−0.234, 5.671) | 3.719 (0.666, 6.772) | 0.042 (−0.930, 1.014) | ||
CCR5 type: WM | 1.000 (0.507, 1.493) | 0.404 (0.231, 0.577) | 0.517 (0.056, 0.977) | ||
TStage-BOBYQA | 244.226 | ||||
Age | 2.718 (0.024, 5.413) | 3.719 (0.659, 6.778) | 0.003 (−0.895, 0.901) | ||
CCR5 type: WM | 1.000 (0.561, 1.439) | 0.404 (0.226, 0.582) | 0.447 (0.024, 0.870) | ||
TStep-BOBYQA | 244.226 | ||||
Age | 2.718 (0.112, 5.324) | 3.719 (0.700, 6.737) | 0.003 (−0.919, 0.926) | ||
CCR5 type: WM | 1.000 (0.562, 1.438) | 0.404 (0.228, 0.580) | 0.447 (0.003, 0.891) | ||
Gompertz distribution | TStage-BFGS | 249.546 | |||
Age | 1.709 (−0.051, 3.468) | 3.708 (0.645, 6.771) | 0.245 (−0.627, 1.117) | ||
CCR5 type: WM | 0.781 (0.420, 1.143) | 0.400 (0.224, 0.576) | 0.481 (0.067, 0.896) | ||
TStep-BFGS | 245.306 | ||||
Age | 2.065(0.164, 3.967) | 3.434 (0.654, 6.215) | 0.283 (−0.612, 1.177) | ||
CCR5 type: WM | 0.698 (0.402, 0.995) | 0.406 (0.235, 0.578) | 0.353 (−0.061, 0.767) | ||
TStage-BOBYQA | 249.546 | ||||
Age | 1.708 (−0.051, 3.468) | 3.708 (0.645, 6.771) | 0.245 (−0.627, 1.117) | ||
CCR5 type: WM | 0.781 (0.420, 1.143) | 0.400 (0.224, 0.576) | 0.481 (0.067, 0.896) | ||
TStep-BOBYQA | 245.306 | ||||
Age | 2.065 (0.164, 3.967) | 3.434 (0.654, 6.215) | 0.282(−0.612, 1.177) | ||
CCR5 type: WM | 0.698 (0.402, 0.995) | 0.406 (0.235, 0.578) | 0.353 (−0.061, 0.766) |
Parameters | True_Value | TStage-BFGS | TStep-BFGS | TStage-BOBYQA | TStep-BOBYQA | ||||
---|---|---|---|---|---|---|---|---|---|
MSE | CP | MSE | CP | MSE | CP | MSE | CP | ||
Exponential distribution | |||||||||
1.360 | 0.046 | 0.0 | 0.002 | 94.4 | 0.046 | 0.0 | 0.002 | 94.4 | |
0.577 | 0.011 | 81.6 | 0.004 | 93.6 | 0.011 | 81.6 | 0.004 | 93.6 | |
0.100 | 0.002 | 93.4 | 0.002 | 94.0 | 0.002 | 93.4 | 0.002 | 94.0 | |
0.980 | 0.002 | 94.2 | 0.002 | 94.8 | 0.002 | 94.2 | 0.002 | 94.8 | |
0.300 | 0.005 | 95.0 | 0.004 | 94.2 | 0.005 | 95.0 | 0.004 | 94.2 | |
0.150 | 0.001 | 95.8 | 0.001 | 95.8 | 0.001 | 95.8 | 0.001 | 95.8 | |
1.260 | 0.070 | 10.4 | 0.006 | 93.4 | 0.071 | 0.4 | 0.006 | 93.4 | |
−0.037 | 0.054 | 57.0 | 0.015 | 94.4 | 0.054 | 33.6 | 0.016 | 94.4 | |
−1.200 | 0.011 | 89.8 | 0.008 | 95.2 | 0.011 | 52.2 | 0.008 | 95.2 | |
Time (minutes) | 171.6 | 242.1 | 208.0 | 315.7 | |||||
Weibull distribution | |||||||||
2.600 | 0.002 | 92.8 | 0.001 | 95.6 | 0.002 | 92.8 | 0.001 | 95.8 | |
−1.660 | 0.004 | 87.0 | 0.002 | 94.8 | 0.004 | 87.0 | 0.002 | 94.6 | |
−0.077 | 0.004 | 96.0 | 0.003 | 96.2 | 0.004 | 96.0 | 0.003 | 96.0 | |
0.210 | 0.001 | 97.2 | 0.001 | 97.0 | 0.001 | 97.2 | 0.001 | 97.0 | |
2.990 | 0.020 | 5.8 | 0.002 | 94.0 | 0.002 | 95.4 | 0.002 | 93.4 | |
−3.260 | 0.068 | 0.0 | 0.005 | 94.0 | 0.005 | 95.4 | 0.005 | 93.0 | |
−0.370 | 0.018 | 60.8 | 0.004 | 94.4 | 0.005 | 94.2 | 0.004 | 94.4 | |
0.050 | 0.003 | 89.4 | 0.001 | 97.4 | 0.001 | 97.4 | 0.001 | 97.4 | |
1.260 | 0.013 | 68.6 | 0.006 | 95.2 | 0.006 | 55.6 | 0.006 | 95.2 | |
−0.037 | 0.054 | 63.8 | 0.019 | 95.6 | 0.021 | 54.2 | 0.020 | 95.2 | |
−1.200 | 0.015 | 87.4 | 0.011 | 94.0 | 0.011 | 46.2 | 0.011 | 94.0 | |
Time (minutes) | 850.2 | 976.4 | 876.3 | 1055.1 | |||||
Gompertz distribution | |||||||||
2.600 | 0.004 | 91.6 | 0.002 | 95.8 | 0.004 | 91.6 | 0.002 | 95.8 | |
−1.660 | 0.005 | 90.8 | 0.003 | 95.4 | 0.005 | 90.8 | 0.003 | 95.2 | |
−0.077 | 0.004 | 96.0 | 0.004 | 96.0 | 0.004 | 96.0 | 0.004 | 95.8 | |
0.210 | 0.002 | 95.6 | 0.001 | 95.8 | 0.002 | 95.6 | 0.001 | 96.0 | |
2.990 | 0.023 | 0.7 | 0.002 | 94.8 | 0.003 | 94.8 | 0.002 | 94.0 | |
−3.260 | 0.068 | 0.0 | 0.006 | 95.2 | 0.006 | 94.6 | 0.005 | 94.8 | |
−0.370 | 0.013 | 75.6 | 0.004 | 96.4 | 0.005 | 94.4 | 0.004 | 94.4 | |
0.050 | 0.003 | 88.2 | 0.002 | 94.4 | 0.002 | 94.2 | 0.002 | 94.6 | |
1.260 | 0.009 | 83.6 | 0.006 | 96.6 | 0.006 | 57.2 | 0.006 | 96.6 | |
−0.037 | 0.044 | 74.8 | 0.022 | 94.4 | 0.023 | 51.0 | 0.022 | 94.4 | |
−1.200 | 0.014 | 90.4 | 0.012 | 94.6 | 0.012 | 45.4 | 0.012 | 94.8 | |
Time (minutes) | 664.2 | 785.2 | 702.4 | 859.4 |
Parameters | True_Value | TStage-BFGS | TStep-BFGS | TStage-BOBYQA | TStep-BOBYQA | ||||
---|---|---|---|---|---|---|---|---|---|
MSE | CP | MSE | CP | MSE | CP | MSE | CP | ||
Exponential distribution | |||||||||
1.360 | 0.003 | 71.0 | 0.008 | 97.0 | 0.003 | 71.0 | 0.008 | 95.0 | |
0.577 | 0.007 | 96.0 | 0.007 | 97.0 | 0.007 | 96.0 | 0.007 | 95.0 | |
0.100 | 0.003 | 71.6 | 0.007 | 94.6 | 0.003 | 71.6 | 0.007 | 94.4 | |
0.980 | 0.002 | 96.8 | 0.002 | 96.8 | 0.002 | 96.8 | 0.002 | 96.8 | |
0.300 | 0.004 | 94.6 | 0.004 | 94.4 | 0.004 | 94.6 | 0.004 | 94.4 | |
0.150 | 0.001 | 97.0 | 0.001 | 97.0 | 0.001 | 97.0 | 0.001 | 97.0 | |
1.260 | 0.105 | 91.8 | 0.098 | 93.4 | 0.105 | 10.6 | 0.097 | 93.6 | |
−0.037 | 0.257 | 95.0 | 0.210 | 93.8 | 0.256 | 14.4 | 0.210 | 93.8 | |
−1.200 | 0.229 | 94.4 | 0.077 | 94.6 | 0.083 | 21.8 | 0.077 | 94.6 | |
Time (minutes) | 425.1 | 570.5 | 398.7 | 500.7 | |||||
Weibull distribution | |||||||||
2.600 | 0.002 | 95.4 | 0.002 | 95.4 | 0.002 | 95.0 | 0.002 | 95.8 | |
−1.660 | 0.004 | 0.0 | 0.003 | 95.2 | 0.003 | 92.0 | 0.003 | 95.2 | |
−0.077 | 0.005 | 0.0 | 0.005 | 95.0 | 0.006 | 93.2 | 0.005 | 94.4 | |
0.210 | 0.002 | 0.0 | 0.002 | 96.4 | 0.003 | 89.4 | 0.002 | 94.6 | |
2.990 | 0.003 | 0.0 | 0.003 | 92.8 | 0.002 | 95.6 | 0.002 | 95.6 | |
−3.260 | 0.005 | 0.0 | 0.005 | 93.6 | 0.005 | 94.6 | 0.005 | 95.0 | |
−0.370 | 0.005 | 0.0 | 0.005 | 93.8 | 0.005 | 95.4 | 0.005 | 95.0 | |
0.050 | 0.002 | 0.0 | 0.002 | 96.2 | 0.002 | 96.0 | 0.002 | 96.4 | |
1.260 | 0.066 | 0.0 | 0.067 | 95.4 | 0.083 | 11.6 | 0.067 | 91.6 | |
−0.037 | 0.151 | 0.0 | 0.155 | 96.0 | 0.196 | 18.2 | 0.156 | 93.0 | |
−1.200 | 0.061 | 0.0 | 0.063 | 96.0 | 0.066 | 17.4 | 0.063 | 93.2 | |
Time (minutes) | 1106.7 | 1292.4 | |||||||
Gompertz distribution | |||||||||
2.600 | 0.000 | 93.8 | 0.004 | 94.2 | 0.003 | 93.8 | 0.004 | 94.2 | |
−1.660 | 0.008 | 92.8 | 0.004 | 95.6 | 0.005 | 92.8 | 0.004 | 95.2 | |
−0.077 | 0.039 | 93.8 | 0.005 | 97.0 | 0.006 | 93.8 | 0.005 | 96.8 | |
0.210 | 0.004 | 91.2 | 0.002 | 96.2 | 0.002 | 91.2 | 0.002 | 96.0 | |
2.990 | 0.000 | 95.4 | 0.003 | 95.4 | 0.003 | 95.4 | 0.003 | 95.4 | |
−3.260 | 0.000 | 95.0 | 0.007 | 95.4 | 0.007 | 95.0 | 0.007 | 95.4 | |
−0.370 | 0.013 | 94.6 | 0.005 | 95.0 | 0.005 | 94.6 | 0.005 | 95.0 | |
0.050 | 0.004 | 94.6 | 0.002 | 94.2 | 0.002 | 94.6 | 0.002 | 94.2 | |
1.260 | 0.235 | 95.0 | 0.072 | 95.2 | 0.071 | 12.6 | 0.072 | 95.6 | |
−0.037 | 0.280 | 94.8 | 0.198 | 94.8 | 0.191 | 13.4 | 0.196 | 94.8 | |
−1.200 | 0.239 | 93.4 | 0.074 | 93.0 | 0.072 | 17.6 | 0.074 | 92.8 | |
Time (minutes) | 919.6 | 1090.3 | 919.6 | 1090.3 |
Parameters | True_Value | TStage-BFGS | TStep-BFGS | TStage-BOBYQA | TStep-BOBYQA | ||||
---|---|---|---|---|---|---|---|---|---|
MSE | CP | MSE | CP | MSE | CP | MSE | CP | ||
Exponential distribution | |||||||||
1.360 | 0.016 | 24.8 | 0.002 | 95.6 | 0.016 | 24.8 | 0.002 | 95.8 | |
0.577 | 0.012 | 76.2 | 0.004 | 95.0 | 0.012 | 76.2 | 0.004 | 95.2 | |
0.100 | 0.010 | 46.6 | 0.002 | 94.4 | 0.010 | 46.6 | 0.001 | 94.6 | |
0.980 | 0.002 | 95.2 | 0.002 | 94.4 | 0.002 | 95.4 | 0.002 | 94.6 | |
0.300 | 0.005 | 94.8 | 0.004 | 94.0 | 0.005 | 95.0 | 0.004 | 94.2 | |
0.150 | 0.001 | 95.2 | 0.001 | 95.4 | 0.001 | 95.4 | 0.001 | 95.6 | |
1.260 | 0.009 | 68.0 | 0.003 | 93.0 | 0.009 | 68.4 | 0.003 | 93.2 | |
−0.037 | 0.016 | 78.6 | 0.007 | 95.0 | 0.016 | 72.6 | 0.007 | 95.2 | |
−1.200 | 0.010 | 81.0 | 0.004 | 95.0 | 0.010 | 57.6 | 0.004 | 95.2 | |
Time (minutes) | 560.4 | 650.3 | 590.1 | 748.0 | |||||
Weibull distribution | |||||||||
2.600 | 0.001 | 96.2 | 0.001 | 95.4 | 0.001 | 95.0 | 0.001 | 95.0 | |
−1.660 | 0.003 | 94.0 | 0.003 | 93.8 | 0.003 | 95.4 | 0.002 | 95.0 | |
−0.077 | 0.004 | 94.2 | 0.004 | 95.2 | 0.004 | 94.8 | 0.004 | 95.8 | |
0.210 | 0.002 | 95.4 | 0.002 | 96.4 | 0.002 | 94.0 | 0.001 | 94.4 | |
2.990 | 0.002 | 94.2 | 0.002 | 95.8 | 0.002 | 94.2 | 0.002 | 94.8 | |
−3.260 | 0.005 | 93.8 | 0.005 | 94.4 | 0.005 | 96.0 | 0.005 | 95.8 | |
−0.370 | 0.004 | 96.0 | 0.004 | 93.8 | 0.004 | 95.2 | 0.004 | 94.2 | |
0.050 | 0.002 | 96.8 | 0.002 | 96.8 | 0.002 | 95.6 | 0.001 | 96.2 | |
1.260 | 0.003 | 92.4 | 0.003 | 94.2 | 0.003 | 89.0 | 0.003 | 94.8 | |
−0.037 | 0.010 | 94.0 | 0.010 | 93.8 | 0.010 | 74.6 | 0.010 | 94.0 | |
−1.200 | 0.005 | 94.2 | 0.005 | 94.2 | 0.005 | 76.4 | 0.005 | 95.4 | |
Time (minutes) | 1228.1 | 1332.6 | 1248.5 | 1462.7 | |||||
Gompertz distribution | |||||||||
2.600 | 0.003 | 94.4 | 0.003 | 95.6 | 0.003 | 94.8 | 0.003 | 95.0 | |
−1.660 | 0.004 | 96.2 | 0.003 | 95.6 | 0.004 | 94.8 | 0.003 | 95.0 | |
−0.077 | 0.004 | 96.0 | 0.004 | 95.6 | 0.005 | 95.2 | 0.004 | 95.4 | |
0.210 | 0.002 | 92.8 | 0.001 | 95.4 | 0.002 | 93.6 | 0.001 | 93.8 | |
2.990 | 0.003 | 94.6 | 0.002 | 94.2 | 0.003 | 94.6 | 0.002 | 94.8 | |
−3.260 | 0.007 | 94.0 | 0.005 | 94.4 | 0.006 | 94.6 | 0.005 | 94.8 | |
−0.370 | 0.005 | 94.4 | 0.005 | 96.2 | 0.006 | 94.0 | 0.005 | 94.2 | |
0.050 | 0.002 | 95.4 | 0.001 | 95.2 | 0.002 | 95.2 | 0.001 | 95.4 | |
1.260 | 0.003 | 94.0 | 0.003 | 94.8 | 0.003 | 94.0 | 0.003 | 94.2 | |
−0.037 | 0.009 | 94.8 | 0.010 | 95.0 | 0.010 | 95.0 | 0.010 | 95.2 | |
−1.200 | 0.005 | 95.0 | 0.005 | 95.0 | 0.005 | 95.2 | 0.005 | 95.4 | |
Time (minutes) | 1044.5 | 1147.1 | 1072.8 | 1276.7 |
Parameters | True_Value | TStage-BFGS | TStep-BFGS | TStage-BOBYQA | TStep-BOBYQA | ||||
---|---|---|---|---|---|---|---|---|---|
MSE | CP | MSE | CP | MSE | CP | MSE | CP | ||
Exponential distribution | |||||||||
1.360 | 0.048 | 0.0 | 0.002 | 94.2 | 0.050 | 0.06 | 0.002 | 94.2 | |
0.577 | 0.010 | 84.6 | 0.004 | 94.6 | 0.011 | 84.6 | 0.004 | 94.6 | |
0.100 | 0.030 | 0.6 | 0.002 | 94.6 | 0.030 | 0.6 | 0.002 | 94.6 | |
0.980 | 0.002 | 97.0 | 0.001 | 95.4 | 0.002 | 95.0 | 0.001 | 95.4 | |
0.300 | 0.005 | 94.6 | 0.004 | 94.6 | 0.005 | 94.6 | 0.004 | 94.6 | |
0.150 | 0.001 | 96.0 | 0.001 | 96.0 | 0.001 | 96.0 | 0.001 | 96.0 | |
1.260 | 0.013 | 29.8 | 0.002 | 92.8 | 0.013 | 29.8 | 0.002 | 92.8 | |
−1.037 | 0.010 | 78.8 | 0.005 | 92.8 | 0.010 | 78.8 | 0.005 | 92.8 | |
−1.200 | 0.006 | 71.6 | 0.002 | 94.4 | 0.006 | 71.6 | 0.002 | 94.4 | |
Time (minutes) | 1637.3 | 1922.3 | 1704.4 | 2109.0 | |||||
Weibull distribution | |||||||||
2.600 | 0.003 | 85.8 | 0.003 | 96.6 | 0.002 | 88.2 | 0.002 | 94.4 | |
1.360 | 0.012 | 58.4 | 0.002 | 95.8 | 0.012 | 57.6 | 0.002 | 94.6 | |
0.577 | 0.007 | 90.2 | 0.003 | 97.2 | 0.008 | 86.2 | 0.004 | 94.6 | |
0.100 | 0.018 | 13.2 | 0.001 | 96.2 | 0.019 | 12.4 | 0.002 | 95.2 | |
2.990 | 0.002 | 93.0 | 0.002 | 93.8 | 0.002 | 94.6 | 0.002 | 93.6 | |
0.980 | 0.005 | 95.4 | 0.004 | 94.8 | 0.005 | 94.0 | 0.004 | 94.2 | |
0.300 | 0.005 | 94.8 | 0.004 | 94.4 | 0.005 | 95.4 | 0.004 | 94.4 | |
0.150 | 0.002 | 96.6 | 0.001 | 96.0 | 0.001 | 97.0 | 0.001 | 96.6 | |
1.260 | 0.001 | 93.4 | 0.001 | 94.0 | 0.002 | 90.4 | 0.002 | 92.4 | |
−1.037 | 0.004 | 95.8 | 0.004 | 95.8 | 0.005 | 92.6 | 0.005 | 93.0 | |
−1.200 | 0.002 | 85.8 | 0.001 | 96.0 | 0.002 | 86.2 | 0.002 | 94.2 | |
Time (minutes) | 1656.0 | 1898.2 | 1705.1 | 2134.2 | |||||
Gompertz distribution | |||||||||
2.600 | 0.007 | 94.6 | 0.003 | 94.2 | 0.007 | 84.6 | 0.003 | 94.2 | |
1.360 | 0.019 | 55.6 | 0.004 | 95.8 | 0.020 | 55.6 | 0.004 | 95.8 | |
0.577 | 0.009 | 84.2 | 0.004 | 95.0 | 0.009 | 84.2 | 0.004 | 95.0 | |
0.100 | 0.021 | 0.9 | 0.002 | 94.6 | 0.021 | 0.9 | 0.002 | 94.6 | |
2.990 | 0.003 | 95.4 | 0.003 | 95.2 | 0.003 | 94.4 | 0.003 | 95.4 | |
0.980 | 0.007 | 93.8 | 0.006 | 94.6 | 0.007 | 93.8 | 0.006 | 94.6 | |
0.300 | 0.005 | 95.6 | 0.004 | 94.6 | 0.005 | 95.6 | 0.004 | 94.6 | |
0.150 | 0.002 | 97.0 | 0.002 | 97.2 | 0.002 | 97.0 | 0.002 | 97.2 | |
1.260 | 0.002 | 91.4 | 0.002 | 93.6 | 0.002 | 91.4 | 0.002 | 93.6 | |
−1.037 | 0.005 | 93.2 | 0.005 | 93.2 | 0.005 | 93.2 | 0.005 | 93.2 | |
−1.200 | 0.003 | 95.4 | 0.002 | 93.2 | 0.002 | 95.4 | 0.002 | 93.2 | |
Time (minutes) | 1920.6 | 2520.9 | 1920.6 | 2520.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Duan, B.; Wojtyś, M.; Wei, Y. Two-Step Estimation Procedure for Parametric Copula-Based Regression Models for Semi-Competing Risks Data. Entropy 2025, 27, 521. https://doi.org/10.3390/e27050521
Zhang Q, Duan B, Wojtyś M, Wei Y. Two-Step Estimation Procedure for Parametric Copula-Based Regression Models for Semi-Competing Risks Data. Entropy. 2025; 27(5):521. https://doi.org/10.3390/e27050521
Chicago/Turabian StyleZhang, Qingmin, Bowen Duan, Małgorzata Wojtyś, and Yinghui Wei. 2025. "Two-Step Estimation Procedure for Parametric Copula-Based Regression Models for Semi-Competing Risks Data" Entropy 27, no. 5: 521. https://doi.org/10.3390/e27050521
APA StyleZhang, Q., Duan, B., Wojtyś, M., & Wei, Y. (2025). Two-Step Estimation Procedure for Parametric Copula-Based Regression Models for Semi-Competing Risks Data. Entropy, 27(5), 521. https://doi.org/10.3390/e27050521