Towards Nonlinearity: The p-Regularity Theory
Abstract
:1. Introduction
1.1. Recollection of the Fundamental Results in the Regular Case
- (a)
- A is surjective.
- (b)
- A is open.
- (c)
- There is a constant , such that for all there exists with and .
1.2. Generalizations
1.3. Aims and Scope
General Notation
2. Essential Nonlinearity and Singular Mappings
- 1.
- ,
- 2.
- for all ,
- 3.
- (the identity mapping on X).
3. Elements of -Regularity Theory
4. Singular Problems and Classical Results via the -Regularity Theory
4.1. Lyusternik Theorem and Description of Solution Sets
4.1.1. Lyusternik Theorem in the Regular Case
4.1.2. A Generalization of the Lyusternik Theorem
4.1.3. Representation Theorem
- 1.
- ;
- 2.
- for all ;
- 3.
- for all ;
- 4.
- .
4.1.4. Morse Lemma
4.2. Implicit Function Theorem
4.2.1. Implicit Function Theorem in the Regular Case
4.2.2. Implicit Function Theorem in the Degenerate Case
- In the expression , r represents the total order of differentiation, where differentiation is performed q times with respect to x and times with respect to y.
- While the notation appears in the definition (33) of the linear operator , the expression signifies that all components of the derivative are equal to zero.
- The subscript notation (q-times) indicates partial differentiation with respect to the first variable x performed q times.
- For , the notation represents the function value itself.
- The Singularity Condition:
- The pth Order Regularity Condition at the Point :
- The Banach Condition:There exists a constant such that, for any with , the following holds:
- The Elliptic Condition with respect to x:There exists a constant such that
- (a)
- ;
- (b)
- for all ;
- (c)
- for all .
- (1)
- The Singularity Condition:
- (2)
- The p-Factor Approximation Condition:There exists a sufficiently small such that, for all , the following holds:
- (3)
- The Banach Condition:There exists a nonempty open set in X such that for any sufficiently small γ, the intersection of the set with the ball is not empty and . Moreover, for , there exist and a constant c such that and
- (4)
- The Uniform p-Regularity Condition:The mapping is uniformly p-regular over the set
4.3. Newton’s Method
4.3.1. Classical Newton’s Method for Nonlinear Equations and Unconstrained Optimization Problems
4.3.2. The p-Factor Newton’s Method
4.4. Optimality Conditions for Equality-Constrained Optimization Problems
4.4.1. Optimality Conditions: Lagrange Multiplier Theorem
4.4.2. Optimality Conditions for p-Regular Optimization Problems
4.5. Modified Lagrangian Function Method
4.5.1. The Problem
4.5.2. Modified Lagrange Function Method for 2-Regular Problems
- 1.
- Q has linearly independent columns, and
- 2.
- for all .
4.6. Calculus of Variations
4.6.1. Singular Problems of Calculus of Variations
4.6.2. Optimality Conditions for p-Regular Problems of Calculus of Variations
4.7. Existence of Solutions to Nonlinear Equations
4.7.1. Existence of Solutions to Nonlinear Equations in the Regular Case
- 1.
- 2.
- 3.
- ,
4.7.2. Existence of Solutions to Nonlinear Equations in the Singular Case
- 1.
- 2.
4.8. Differential Equations
4.8.1. Nonlinear Boundary-Value Problem
4.8.2. Nonlinear Boundary-Value Problem in the Nonregular Case
4.9. Interpolation by Polynomials
4.9.1. Newton Interpolation Polynomial
4.9.2. The p-Factor Interpolation Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ioffe, A.D. Variational Analysis of Regular Mappings. Theory and Applications, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Banach, S. Théorie des Opérations Linéaires; Monografie Matematyczne, Warszawa 1932: English Translation; North Holland: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Dontchev, A.L. Lectures on variational analysis. In Applied Mathematical Sciences; Springer: Cham, Switzerland, 2021; Volume 205, p. xii+219. [Google Scholar] [CrossRef]
- Graves, L. Some mapping theorems. Duke Math. J. 1950, 17, 111–114. [Google Scholar] [CrossRef]
- Dontchev, A.L. The Graves theorem revisited. J. Convex Anal. 1996, 3, 45–54. [Google Scholar]
- Dontchev, A.L.; Bauschke, H.H.; Burachik, R.; Luke, D.R. The Inverse Function Theorems of L. M. Graves. In Splitting Algorithms, Modern Operator Theory, and Applications; Springer International Publishing: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Dmitruk, A.V.; Milyutin, A.A.; Osmolovskii, N.P. Lyusternik’s Theorem and the Theory of Extrema. Russ. Math. Surv. 1980, 35, 11–51. [Google Scholar] [CrossRef]
- Dontchev, A.L.; Rockafellar, R.T. Implicit Functions and Solution Mappings, 2nd ed.; Springer Series in Operations Research and Financial Engineering; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Dontchev, A.L.; Frankowska, H. Lyusternik-Graves theorem and fixed points I. Proc. Am. Math. Soc. 2011, 139, 521–534. [Google Scholar] [CrossRef]
- Dontchev, A.L.; Frankowska, H. Lyusternik-Graves theorem and fixed points II. J. Convex Anal. 2012, 19, 955–973. [Google Scholar]
- Frankowska, H. High order inverse function theorems. Ann. Inst. H. Poincaré C Anal. Non Linéaire 1989, 6, 283–303. [Google Scholar] [CrossRef]
- Ekeland, I. An inverse function theorem in Fréchet spaces. Ann. Inst. H. Poincaré C Anal. Non Linéaire 2011, 28, 91–105. [Google Scholar] [CrossRef]
- Hamilton, R. The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. 1982, 7, 65–222. [Google Scholar] [CrossRef]
- Bednarczuk, E.M.; Leśniewski, K.W.; Rutkowski, K.E. On tangent cone to systems of inequalities and equations in Banach spaces under relaxed constant rank condition. ESAIM Control Optim. Calc. Var. 2021, 27, 22. [Google Scholar] [CrossRef]
- Tret’yakov, A.A. Necessary conditions for optimality of p-th order. In Control and Optimization; Moscow State University: Moscow, Russia, 1983; pp. 28–35. [Google Scholar]
- Tret’yakov, A.A. Necessary and sufficient conditions for optimality of p-th order. USSR Comput. Math. Math. Phys. 1984, 24, 123–127. [Google Scholar] [CrossRef]
- Buchner, M.; Marsden, J.; Schecter, S. Applications of the blowing-up construction and algebraic geometry to bifurcation problems. J. Differ. Equ. 1983, 48, 404–433. [Google Scholar] [CrossRef]
- Fink, J.; Rheinboldt, W. A geometric framework for the numerical study of singular points. SIAM J. Numer. Anal. 1987, 24, 618–633. [Google Scholar] [CrossRef]
- Krantz, S.; Parks, H. The Implicit Function Theorem: History, Theory, and Applications; Birkha¨user: Boston, MA, USA; Basel, Switzerland; Berlin, Germany, 2002. [Google Scholar]
- Dieudonné, J. Foundations of Modern Analysis; Pure and Applied Mathematics; Academic Press: New York, NY USA; London, UK, 1969; Volume 10-I. [Google Scholar]
- Izmailov, A.F.; Tret’yakov, A.A. Factor-Analysis of Nonlinear Mappings, 1st ed.; Nauka: Moscow, Russia, 1994. [Google Scholar]
- Tret’yakov, A.A.; Marsden, J.E. Factor–analysis of nonlinear mappings: p-regularity theory. Commun. Pure Appl. Anal. 2003, 2, 425–445. [Google Scholar]
- Abraham, R.; Marsden, J.E.; Ratiu, T. Manifolds, Tensor Analysis and Applications; Springer: New York, NY, USA, 1988. [Google Scholar]
- Tret’yakov, A.A. The implicit function theorem in degenerate problems. Russ. Math. Surv. 1987, 42, 179–180. [Google Scholar] [CrossRef]
- Alekseev, V.M.; Tihomirov, V.M.; Fomnin, S.V. Optimal Control; Nauka: Moscow, Russia, 1979. [Google Scholar]
- Bühler, T.; Salamon, D.A. Functional Analysis; Springer: Berlin, Germany, 1991. [Google Scholar]
- Kantorovitch, L.V.; Akilov, G.P. Functional Analysis; Pergamon Press: Oxford, UK, 1982. [Google Scholar]
- Ioffe, A.D.; Tihomirov, V.M. Theory of extremal problems. Stud. Math. Its Appl. 1979, 6, 1–460. [Google Scholar]
- Clarke, F.H. Optimization and Nonsmooth Analysis; Wiley: New York, NY, USA, 1983. [Google Scholar]
- Liusternik, L.A.; Sobolev, V.J. Elements of Functional Analysis; Hindustan Publishing: Delhi, India, 1961. [Google Scholar]
- Dontchev, A.L.; Levis, A.S.; Rockafellar, R.T. The radius of metric regularity. Trans. Am. Math. Soc. 2002, 355, 493–517. [Google Scholar] [CrossRef]
- Ioffe, A.D. Metric regularity and subdifferential calculus. Variational Analysis of Regular Mappings. Theory and Applications. Russ. Math. Surv. 2000, 55, 501–558. [Google Scholar] [CrossRef]
- Sekiguchi, Y.; Takahashi, W. Tangent and normal vectors to feasible regions with geometrically derivable sets. In Scientiae Mathematicae Online; Japanese Association of Mathematical Sciences: Sakai, Osaka, Japan, 2006; pp. 517–527. [Google Scholar]
- Ledzewicz, U.; Schättler, H. A higher order generalization of the Lusternik theorem. Nonlinear Anal. 1998, 34, 793–815. [Google Scholar] [CrossRef]
- Izmailov, A.F. Theorems on the representation of nonlinear mapping families and implicit function theorems. Math. Notes 2000, 67, 45–54. [Google Scholar] [CrossRef]
- Izmailov, A.F. Some generalizations of the Morse lemma. Tr. Mat. Inst. Steklov (Proc. Steklov Inst. Math.) 1998, 220, 142–156. [Google Scholar]
- Brezhneva, O.A.; Tret’yakov, A.A.; Marsden, J.E. Higher-order implicit function theorems and degenerate nonlinear boundary-value problems. Commun. Pure Appl. Anal. 2008, 7, 293–315. [Google Scholar] [CrossRef]
- Randrianantoanina, B.; Randrianantoanina, N. (Eds.) Banach Spaces and Their Applications in Analysis. In Honor of Nigel Kalton’s 60th Birthday; De Gruyter: Berlin, Germany; Boston, MA, USA, 2007. [Google Scholar] [CrossRef]
- Kostina, E.; Kostyukova, O. Generalized implicit function theorem and its application to parametric optimal control problems. J. Math. Anal. Appl. 2006, 320, 736–756. [Google Scholar] [CrossRef]
- Arutyunov, A.V.; Zhukovskiy, S.E. Nonlocal Generalized Implicit Function Theorems in Hilbert Spaces. Differ. Equ. 2020, 56, 1525–1538. [Google Scholar] [CrossRef]
- Arutyunov, A.V. On Implicit Function Theorems at Abnormal Points. Proc. Steklov Inst. Math. 2010, 271, 18–27. [Google Scholar] [CrossRef]
- Arutyunov, A.V.; Salikhova, K. Implicit Function Theorem in a Neighborhood of an Abnormal Point. Proc. Steklov Inst. Math. 2021, 315, 19–26. [Google Scholar] [CrossRef]
- Szczepanik, E.; Prusińska, A.; Tret’yakov, A.A. The p-factor method for nonlinear optimization. Schedae Informaticae 2012, 21, 143–159. [Google Scholar]
- Buhmiler, S.; Krejič, N.; Lužanin, Z. Practical quasi-Newton algorithms for singular nonlinear systems. Numer. Algor. 2010, 55, 481–502. [Google Scholar] [CrossRef]
- Brezhneva, O.A.; Evtushenko, Y.G.; Tret’yakov, A.A. The 2-factor-method with a modified Lagrange function for degenerate constrained optimization problems. Dokl. Math. 2006, 73, 384–387. [Google Scholar] [CrossRef]
- Candelario, G.; Cordero, A.; Torregrosa, J.R.; Vassileva, M.P. Generalized conformable fractional Newton-type method for solving nonlinear systems. Numer. Algor. 2023, 93, 1171–1208. [Google Scholar] [CrossRef]
- Bonnans, J.F.; Shapiro, A. Perturbation Analysis of Optimization Problems; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Avakov, E.R.; MagarilIlyaev, G.G.; Tikhomirov, V.M. The level-set of a smooth mapping in a neighborhood of a singular point, and zeros of a quadratic mapping. Russ. Math. Surv. 2013, 68, 401–433. [Google Scholar] [CrossRef]
- Brezhneva, O.A.; Tret’yakov, A.A. Optimality conditions for degenerate extremum problems with equality constraints. SIAM J. Control Optim. 2003, 42, 723–745. [Google Scholar] [CrossRef]
- Constantin, E. Necessary conditions for weak minima and for strict minima of order two in nonsmooth constrained multiobjective optimization. J. Glob. Optim. 2021, 80, 177–193. [Google Scholar] [CrossRef]
- Gfrerer, H. Second-order necessary conditions for nonlinear optimization problems with abstract constraints: The degenerate case. SIAM J. Optim. 2007, 18, 589–612. [Google Scholar] [CrossRef]
- Evtushenko, Y.G. Generalized Lagrange multiplier technique for nonlinear programming. J. Optim. Theory Appl. 1977, 21, 121–135. [Google Scholar] [CrossRef]
- Bertsekas, D.P. Nonlinear Programming; Athena Scientific: Belmont, MA, USA, 2016. [Google Scholar]
- Antipin, A.S.; Vasilieva, O.O. Dynamic method of multipliers in terminal control. Comput. Math. Math. Phys. 2015, 55, 766–787. [Google Scholar] [CrossRef]
- Zhiltsov, A.V.; Namm, R.V. The Lagrange multiplier method in a finite-dimensional convex programming problem. Dalnevost. Mat. Zh. 2015, 15, 53–60. [Google Scholar]
- Brezhneva, O.A.; Tret’yakov, A.A. When the Karush–Kuhn–Tucker Theorem Fails: Constraint Qualifications and Higher-Order Optimality Conditions for Degenerate Optimization Problems. J. Optim. Theory Appl. 2017, 174, 367–387. [Google Scholar] [CrossRef]
- Bradley, J.S.; Everitt, W.N. Inequalities Associated with Regular and Singular Problems in the Calculus of Variations. Trans. Am. Math. Soc. 1973, 182, 303–321. [Google Scholar] [CrossRef]
- Konjik, S.; Kunzinger, M.; Oberguggenberger, M. Foundations of the calculus of variations in generalized function algebras. Acta Appl. Math. 2008, 103, 169–199. [Google Scholar] [CrossRef]
- Lecke, A.; Baglini, L.L.; Giordano, P. The classical theory of calculus of variations for generalized functions. Adv. Nonlinear Anal. 2019, 8, 779–808. [Google Scholar] [CrossRef]
- Gelfand M., F.S.V. Calculus of Variations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1963. [Google Scholar]
- Sivaloganathan, J. Singular minimisers in the Calculus of Variations: A degenerate form of cavitation. Ann. L’Institut Henri Poincaré C Anal. Non Linéaire 1992, 9, 657–681. [Google Scholar] [CrossRef]
- Tuckey, C. Nonstandard Methods in the Calculus of Variations; Pitman Research Notes in Math. Ser. 297; Longman Scientific & Technical: Harlow, UK, 1993. [Google Scholar]
- Prusińska, A.; Szczepanik, E.; Tret’yakov, A.A. p-th order optimality conditions for singular Lagrange problem in calculus of variations. Elements of p-regularity theory. In System Modeling and Optimization. CSMO 2011. IFIP Advances in Information and Communication Technology; Springer: Berlin/Heidelberg, Germany, 2013; Volume 391, pp. 528–537. [Google Scholar]
- Bellman, R.; Adomian, G. The Euler-Lagrange Equations and Characteristics; Springer: Dordrecht, The Netherlands, 1985; pp. 36–58. [Google Scholar] [CrossRef]
- Korneva, I.T.; Tret’yakov, A.A. Application of the factor-analysis to the calculus of variations. In Proceedings of Simulation and Analysis in Problems of Decision Making Theory; Computing Center of the Russian Academy of Sciences: Moscow, Russia, 2002; pp. 144–162. (In Russian) [Google Scholar]
- Cabada, A.; Aleksić, S.; Tomović, T.V.; Dimitrijević, S. Existence of Solutions of Nonlinear and Non-local Fractional Boundary Value Problems. Mediterr. J. Math. 2019, 16, 119. [Google Scholar] [CrossRef]
- Bobisud, L.E. Existence of solutions for nonlinear singular boundary value problems. Appl. Anal. 1990, 35, 43–57. [Google Scholar] [CrossRef]
- Zhang, G.; Cheng, S.S. Existence of solutions for a nonlinear system with a parameter. J. Math. Anal. Appl. 2006, 314, 311–319. [Google Scholar] [CrossRef]
- Reddien, G.W. On Newton’s method for singular problems. SIAM J. Numer. Anal. 1978, 15, 993–996. [Google Scholar] [CrossRef]
- Demidovitch, B.P.; Maron, I.A. Computational Mathematics; Nauka: Moscow, Russia, 1973. [Google Scholar]
- Moore, R.E. A Test for Existence of Solutions to Nonlinear Systems. SIAM J. Numer. Anal. 1977, 14, 611–615. [Google Scholar] [CrossRef]
- Prusińska, A.; Tret’yakov, A.A. On the Existence of Solutions to Nonlinear Equations Involving Singular Mappings with Non-zero p-Kernel. Set-Valued Anal. 2011, 19, 399–416. [Google Scholar] [CrossRef]
- Bradie, B. A Friendly Introduction to Numerical Analysis; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2006. [Google Scholar]
- Burden, R.L.; Faires, J.D. Numerical Analysis; Thomson Brooks/Cole: Pacific Grove, CA, USA, 2005. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bednarczuk, E.; Brezhneva, O.; Leśniewski, K.; Prusińska, A.; Tret’yakov, A.A. Towards Nonlinearity: The p-Regularity Theory. Entropy 2025, 27, 518. https://doi.org/10.3390/e27050518
Bednarczuk E, Brezhneva O, Leśniewski K, Prusińska A, Tret’yakov AA. Towards Nonlinearity: The p-Regularity Theory. Entropy. 2025; 27(5):518. https://doi.org/10.3390/e27050518
Chicago/Turabian StyleBednarczuk, Ewa, Olga Brezhneva, Krzysztof Leśniewski, Agnieszka Prusińska, and Alexey A. Tret’yakov. 2025. "Towards Nonlinearity: The p-Regularity Theory" Entropy 27, no. 5: 518. https://doi.org/10.3390/e27050518
APA StyleBednarczuk, E., Brezhneva, O., Leśniewski, K., Prusińska, A., & Tret’yakov, A. A. (2025). Towards Nonlinearity: The p-Regularity Theory. Entropy, 27(5), 518. https://doi.org/10.3390/e27050518