NPA Hierarchy and Extremal Criterion in the Simplest Bell Scenario
Abstract
:1. Introduction
2. Plausible Criterion
3. NPA Hierarchy and Simplest Bell Scenario
4. Summary
Funding
Data Availability Statement
Conflicts of Interest
References
- Bell, J. On the Einstein Podolsky Rosen paradox. Physics 1964, 1, 195. [Google Scholar] [CrossRef]
- Cirel’son, B.S. Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 1980, 4, 93. [Google Scholar] [CrossRef]
- Popescu, S.; Rohrlich, D. Quantum nonlocality as an axiom. Found Phys. 1994, 24, 379–385. [Google Scholar] [CrossRef]
- Brunner, N.; Cavalcanti, D.; Pironio, S.; Scarani, V.; Wehner, S. Bell nonlocality. Rev. Mod. Phys. 2014, 86, 419. [Google Scholar] [CrossRef]
- Popescu, S. Bounds on quantum correlations in Bell-inequality experiments. Nat. Phys. 2014, 10, 264. [Google Scholar] [CrossRef]
- Oas, G.; de Barros, J.A. Contextuality from Quantum Physics to Psychology; World Scientific: Singapore, 2016; Chapter 15; pp. 335–366. [Google Scholar]
- Oppenheim, J.; Wehner, S. The Uncertainty Principle Determines the Nonlocality of Quantum Mechanics. Science 2010, 330, 1072. [Google Scholar] [CrossRef]
- Ramanathan, R.; Goyeneche, D.; Muhammad, S.; Mironowicz, P.; Grünfeld, M.; Bourennane, M.; Horodecki, P. Steering is an essential feature of non-locality in quantum theory. Nat. Commun. 2018, 9, 4244. [Google Scholar] [CrossRef] [PubMed]
- Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed Experiment to Test Local Hidden-Variable Theories. Phys. Rev. Lett. 1969, 23, 880. [Google Scholar] [CrossRef]
- Tsirelson, B.S. Quantum analogues of the Bell inequalities. The case of two spatially separated domains. J. Sov. Math. 1987, 36, 557. [Google Scholar] [CrossRef]
- Landau, L.J. Empirical Two-Point Correlation Functions. Found. Phys. 1988, 18, 449. [Google Scholar] [CrossRef]
- Masanes, L. Necessary and sufficient condition for quantum-generated correlations. arXiv 2003, arXiv:quant-ph/0309137. [Google Scholar]
- Le, T.P.; Meroni, C.; Sturmfels, B.; Wernet, R.F.; Ziegler, T. Quantum Correlations in the Minimal Scenario. Quantum 2023, 7, 947. [Google Scholar] [CrossRef]
- Acín, A.; Massar, S.; Pironio, S. Randomness versus Nonlocality and Entanglement. Phys. Rev. Lett. 2012, 108, 100402. [Google Scholar] [CrossRef] [PubMed]
- Rabelo, R.; Zhi, L.Y.; Scarani, V. Device-Independent Bounds for Hardy’s Experiment. Phys. Rev. Lett. 2012, 109, 180401. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, E.; Yelin, S.F. Quantum bounds for inequalities involving marginal expectation values. Phys. Rev. A 2012, 86, 012123. [Google Scholar] [CrossRef]
- Goh, K.T.; Kaniewski, J.m.k.; Wolfe, E.; Vértesi, T.; Wu, X.; Cai, Y.; Liang, Y.C.; Scarani, V. Geometry of the set of quantum correlations. Phys. Rev. A 2018, 97, 022104. [Google Scholar] [CrossRef]
- Ishizaka, S. Necessary and sufficient criterion for extremal quantum correlations in the simplest Bell scenario. Phys. Rev. A 2018, 97, 050102, Erratum in Phys. Rev. A 2024, 109, 059903. [Google Scholar] [CrossRef]
- Mikos-Nuszkiewicz, A.; Kaniewski, J. Extremal points of the quantum set in the Clauser-Horne-Shimony-Holt scenario: Conjectured analytical solution. Phys. Rev. A 2023, 108, 012212. [Google Scholar] [CrossRef]
- Navascués, M.; Pironio, S.; Acín, A. Bounding the Set of Quantum Correlations. Phys. Rev. Lett. 2007, 98, 010401. [Google Scholar] [CrossRef]
- Navascués, M.; Pironio, S.; Acín, A. A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New J. Phys. 2008, 10, 073013. [Google Scholar] [CrossRef]
- Navascués, M.; Vétesi, T. Bounding the set of finite dimensional quantum correlations. Phys. Rev. Lett. 2015, 115, 020501. [Google Scholar] [CrossRef] [PubMed]
- Ishizaka, S. Cryptographic quantum bound on nonlocality. Phys. Rev. A 2017, 95, 022108. [Google Scholar] [CrossRef]
- Yamashita, M.; Fujisawa, K.; Nakata, K.; Nakata, M.; Fukuda, M.; Kobayashi, K.; Goto, K. A High-Performance Software Package for Semidefinite Programs: SDPA 7; Research Report No. B-460; Department of Mathematical and Computing Science, Tokyo Institute of Technology: Tokyo, Japan, 2010. [Google Scholar]
x | 2nd | ||
---|---|---|---|
0.0 | 2.82842712474619 | 2.82842712474619 | 2.82842712474619 |
0.4 | 2.88444102037119 | 2.88444102037119 | 2.88444102037119 |
0.8 | 3.04630924234556 | 3.04630924234556 | 3.04630924234556 |
1.2 | 3.29848450049413 | 3.29848450049413 | 3.29848450049413 |
1.6 | 3.62215405525497 | 3.62215405525497 | 3.62215405525497 |
2.0 | 4.00000000000000 | 4.00000000000000 | 4.00000000000000 |
x | 2nd | ||
0.0 | 2.82842712474619 | 2.82842712474619 | 2.82842712474619 |
0.2 | 2.83091685885720 | 2.83091685885720 | 2.83091685885720 |
0.4 | 2.83923308963559 | 2.83923308963559 | 2.83923308963559 |
0.6 | 2.85676984164748 | 2.85676984164748 | 2.85676984164748 |
0.8 | 2.89417689813970 | 2.90075597099059 | 2.89417689813970 |
1.0 | 3.00000000000000 | 3.01789221335227 | 3.00737232088269 |
1.2 | 3.20000000000000 | 3.20000000000000 | 3.20000000000000 |
1.4 | 3.40000000000000 | 3.40000000000000 | 3.40000000000000 |
1.6 | 3.60000000000000 | 3.60000000000000 | 3.60000000000000 |
1.8 | 3.80000000000000 | 3.80000000000000 | 3.80000000000000 |
2.0 | 4.00000000000000 | 4.00000000000000 | 4.00000000000000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishizaka, S. NPA Hierarchy and Extremal Criterion in the Simplest Bell Scenario. Entropy 2025, 27, 182. https://doi.org/10.3390/e27020182
Ishizaka S. NPA Hierarchy and Extremal Criterion in the Simplest Bell Scenario. Entropy. 2025; 27(2):182. https://doi.org/10.3390/e27020182
Chicago/Turabian StyleIshizaka, Satoshi. 2025. "NPA Hierarchy and Extremal Criterion in the Simplest Bell Scenario" Entropy 27, no. 2: 182. https://doi.org/10.3390/e27020182
APA StyleIshizaka, S. (2025). NPA Hierarchy and Extremal Criterion in the Simplest Bell Scenario. Entropy, 27(2), 182. https://doi.org/10.3390/e27020182