Bayesian Estimation of Multicomponent Stress–Strength Model Using Progressively Censored Data from the Inverse Rayleigh Distribution
Abstract
1. Introduction
2. Model Description
3. Parameter Estimation
3.1. Maximum Likelihood Estimation
3.2. Bayesian Inference
3.2.1. Lindley Approximation
3.2.2. Gibbs Sampling
4. Simulation Study
5. Real Data Set
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Treyer, V.N. Inverse Rayleigh (IR) model. Proc. USSR Acad. Sci. 1964. [Google Scholar]
- Voda, V. Some results on the inverse Rayleigh distribution. Rev. Roum. Mathématiques Pures Appliquées 1972, 17, 1525–1534. [Google Scholar]
- Bhattacharyya, G.K.; Johnson, R.A. Estimation of reliability in a multicomponent stress-strength model. J. Am. Stat. Assoc. 1974, 69, 966–970. [Google Scholar] [CrossRef]
- Li, Y.; Xie, M. Estimation of multicomponent stress–strength reliability for Weibull components. Reliab. Eng. Syst. Saf. 2017, 162, 53–60. [Google Scholar] [CrossRef]
- Jia, J.; Yan, Z.; Song, H.; Chen, Y. Reliability estimation in multicomponent stress–strength model for generalized inverted exponential distribution. Soft Comput. 2023, 27, 903–916. [Google Scholar] [CrossRef]
- Nadar, M.; Kizilaslan, F. Estimation of reliability in a multicomponent stress-strength model based on a Marshall-Olkin bivariate Weibull distribution. IEEE Trans. Reliab. 2016, 65, 370–380. [Google Scholar] [CrossRef]
- Chaudhary, S.; Tomer, S.K. Estimation of stress–strength reliability for Maxwell distribution under progressive Type-II censoring scheme. Int. J. Syst. Assur. Eng. Manag. 2018, 9, 1107–1119. [Google Scholar] [CrossRef]
- Saini, S.; Garg, R.; Swaroop, C. Inference on multicomponent stress-strength model using progressively censored data from exponentiated Pareto distribution. Qual. Technol. Quant. Manag. 2025, 1–29. [Google Scholar] [CrossRef]
- Saini, S.; Tomer, S.; Garg, R. Inference of multicomponent stress-strength reliability following Topp-Leone distribution using progressively censored data. J. Appl. Stat. 2023, 50, 1538–1567. [Google Scholar] [CrossRef]
- Ren, H.; Gong, Q.; Hu, X. Estimation of entropy for generalized Rayleigh distribution under progressively Type-II censored samples. Axioms 2023, 12, 776. [Google Scholar] [CrossRef]
- Alotaibi, R.; Nassar, M.; Elshahhat, A. Statistical analysis of inverse Lindley data using adaptive type-II progressively hybrid censoring with applications. Axioms 2023, 12, 427. [Google Scholar] [CrossRef]
- Gong, Q.; Chen, R.; Ren, H.; Zhang, F. Estimation of the reliability function of the generalized Rayleigh distribution under progressive first-failure censoring model. Axioms 2024, 13, 580. [Google Scholar] [CrossRef]
- Hu, X.; Ren, H. Reliability estimation of inverse Weibull distribution based on intuitionistic fuzzy lifetime data. Axioms 2023, 12, 838. [Google Scholar] [CrossRef]
- Lv, Q.; Tian, Y.; Gui, W. Statistical inference for Gompertz distribution under adaptive type-II progressive hybrid censoring. J. Appl. Stat. 2024, 51, 451–480. [Google Scholar] [CrossRef] [PubMed]
- Yadav, C.P.; Panwar, M.S. Parametric inference of inverse Maxwell distribution under Type-I progressively hybrid censoring scheme. Life Cycle Reliab. Saf. Eng. 2025, 14, 19–35. [Google Scholar] [CrossRef]
- Nagy, M.; Alrasheedi, A.F. Estimations of generalized exponential distribution parameters based on type I generalized progressive hybrid censored data. Comput. Math. Methods Med. 2022, 2022, 8058473. [Google Scholar] [CrossRef]
- Kazemi, R.; Kohansal, A. Stress–strength parameter estimation based on Type II progressive censored samples for a Weibull–Half–Logistic distribution. Bull. Malays. Math. Sci. Soc. 2021, 44, 2531–2566. [Google Scholar] [CrossRef]
- Darzi, F.H.; Haghighi, F.; Mahabadi, S.E. Implementation of the sequential optimal design strategy in Type-II progressive censoring with the GLM-based mechanism. J. Korean Stat. Soc. 2024, 53, 774–790. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Balakrishnan, N.; Aggarwala, R. Progressive Censoring: Theory, Methods, and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Akgül, F.G. Reliability estimation in multicomponent stress–strength model for Topp-Leone distribution. J. Stat. Comput. Simul. 2019, 89, 2914–2929. [Google Scholar] [CrossRef]
- Bernardo, J.M.; Smith, A.F.M. Bayesian Theory; John Wiley & Sons: Hoboken, NJ, USA, 1994. [Google Scholar]
- Zellner, A. Bayesian estimation and prediction using asymmetric loss functions. J. Am. Stat. Assoc. 1986, 81, 446–451. [Google Scholar] [CrossRef]
- Varian, H.R. A Bayesian approach to real estate assessment. In Studies in Bayesian Econometrics and Statistics; Elsevier: Amsterdam, The Netherlands, 1975; pp. 195–208. [Google Scholar]
- Kharin, V.; Zacks, S. Bayesian estimation under asymmetric loss: Applications in reliability. J. Stat. Plan. Inference 2019, 202, 117–130. [Google Scholar]
- Kundu, D.; Kumar, S. Bayesian analysis of lifetime data using asymmetric loss functions. Commun. Stat. Simul. Comput. 2021, 50, 817–834. [Google Scholar]
- Calabria, R.; Pulcini, G. Point estimation under asymmetric loss functions for left-truncated exponential samples. Commun. Stat. Theory Methods 1996, 25, 585–600. [Google Scholar] [CrossRef]
- Gelman, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.B.; Vehtari, A.; Rubin, D.B. Bayesian Data Analysis, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Danish, M.Y.; Aslam, M. Bayesian estimation for randomly censored generalized exponential distribution under asymmetric loss functions. J. Appl. Stat. 2013, 40, 1106–1119. [Google Scholar] [CrossRef]
- Kundu, D. Bayesian inference and life testing plan for the Weibull distribution in presence of progressive censoring. Technometrics 2008, 50, 144–154. [Google Scholar] [CrossRef]
- Lindley, D.V. Bayesian approximation methods. Trab. Estad. 1980, 31, 223–237. [Google Scholar] [CrossRef]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef]
- Chen, M.H.; Shao, Q.M. Monte Carlo estimation of Bayesian credible HPDintervals. J. Comput. Graph. Stat. 1999, 8, 69–92. [Google Scholar] [CrossRef]
- Yang, L. An evidence-based likelihood approach for the reliability of a complex system with overlapped failure data. Comput. Ind. Eng. 2025, 201, 110893. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Sandhu, R.A. A simple simulational algorithm for generating progressive Type-II censored samples. Am. Stat. 1995, 49, 229–230. [Google Scholar] [CrossRef]
- Gelman, A.; Rubin, D.B. Inference from iterative simulation using multiple sequences. Stat. Sci. 1992, 7, 457–511. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, A.; An, L.; Li, M. Bayesian inference of system reliability for multicomponent stress-strength model under Marshall-Olkin Weibull distribution. Systems 2022, 10, 196. [Google Scholar] [CrossRef]
- Mahto, A.K.; Tripathi, Y.M. Estimation of reliability in a multicomponent stress–strength model for inverted exponentiated Rayleigh distribution under progressive censoring. OPSEARCH 2020, 57, 1043–1069. [Google Scholar] [CrossRef]
- Yan, Z.; Shi, Y.; Peng, X. Reliability analysis of k/n (G) degradation system under dependent competing failures. J. Comput. Appl. Math. 2025, 461, 116444. [Google Scholar] [CrossRef]



| C.S | C.S | ||||
|---|---|---|---|---|---|
| Prior-I | Prior-II | Prior-I | Prior-II | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| CS | Method | LF | Abias | MSE | Abias | MSE | Abias | MSE | Abias | MSE |
| MLE | 0.0023 | 0.0083 | 0.0023 | 0.0083 | 0.0102 | 0.0138 | 0.0102 | 0.0138 | ||
| Lindley | SELF | 0.0029 | 0.0086 | 0.0026 | 0.0080 | 0.0107 | 0.0154 | 0.0099 | 0.0140 | |
| LINEX | 0.0022 | 0.0089 | 0.0020 | 0.0081 | 0.0105 | 0.0124 | 0.0096 | 0.0110 | ||
| GELF | 0.0027 | 0.0082 | 0.0024 | 0.0079 | 0.0103 | 0.0115 | 0.0094 | 0.0095 | ||
| MCMC | SELF | 0.0020 | 0.0088 | 0.0021 | 0.0075 | 0.0102 | 0.0096 | 0.0097 | 0.0090 | |
| LINEX | 0.0018 | 0.0084 | 0.0017 | 0.0081 | 0.0098 | 0.0095 | 0.0090 | 0.0089 | ||
| GELF | 0.0015 | 0.0081 | 0.0014 | 0.0077 | 0.0091 | 0.0087 | 0.0084 | 0.0079 | ||
| MLE | 0.0027 | 0.0111 | 0.0027 | 0.0111 | 0.0084 | 0.0116 | 0.0047 | 0.0105 | ||
| Lindley | SELF | 0.0025 | 0.0114 | 0.0020 | 0.0096 | 0.0085 | 0.0105 | 0.0040 | 0.0100 | |
| LINEX | 0.0018 | 0.0119 | 0.0016 | 0.0099 | 0.0088 | 0.0079 | 0.0030 | 0.0070 | ||
| GELF | 0.0024 | 0.0124 | 0.0020 | 0.0094 | 0.0083 | 0.0076 | 0.0039 | 0.0067 | ||
| MCMC | SELF | 0.0013 | 0.0097 | 0.0011 | 0.0090 | 0.0075 | 0.0069 | 0.0031 | 0.0060 | |
| LINEX | 0.0014 | 0.0094 | 0.0009 | 0.0084 | 0.0072 | 0.0070 | 0.0027 | 0.0056 | ||
| GELF | 0.0016 | 0.0096 | 0.0012 | 0.0087 | 0.0076 | 0.0064 | 0.0030 | 0.0059 | ||
| MLE | 0.0030 | 0.0079 | 0.0030 | 0.0079 | 0.0106 | 0.0121 | 0.0106 | 0.0121 | ||
| Lindley | SELF | 0.0035 | 0.0083 | 0.0028 | 0.0081 | 0.0094 | 0.0117 | 0.0089 | 0.0109 | |
| LINEX | 0.0038 | 0.0087 | 0.0030 | 0.0084 | 0.0089 | 0.0110 | 0.0080 | 0.0102 | ||
| GELF | 0.0033 | 0.0081 | 0.0027 | 0.0077 | 0.0080 | 0.0106 | 0.0074 | 0.0097 | ||
| MCMC | SELF | 0.0027 | 0.0073 | 0.0024 | 0.0071 | 0.0075 | 0.0102 | 0.0069 | 0.0094 | |
| LINEX | 0.0024 | 0.0076 | 0.0020 | 0.0069 | 0.0072 | 0.0099 | 0.0066 | 0.0092 | ||
| GELF | 0.0025 | 0.0074 | 0.0021 | 0.0064 | 0.0071 | 0.0097 | 0.0064 | 0.0091 | ||
| MLE | MLE | 0.0104 | 0.0121 | 0.0104 | 0.0121 | 0.0123 | 0.0135 | 0.0123 | 0.0135 | |
| Lindley | SELF | 0.0073 | 0.0110 | 0.0069 | 0.0096 | 0.0103 | 0.0120 | 0.0095 | 0.0112 | |
| LINEX | 0.0082 | 0.0113 | 0.0077 | 0.0102 | 0.0108 | 0.0114 | 0.0097 | 0.0104 | ||
| GELF | 0.0079 | 0.0118 | 0.0074 | 0.0105 | 0.0106 | 0.0110 | 0.0094 | 0.0102 | ||
| MCMC | SELF | 0.0107 | 0.0109 | 0.0096 | 0.0100 | 0.0111 | 0.0115 | 0.0102 | 0.0108 | |
| LINEX | 0.0104 | 0.0101 | 0.0092 | 0.0090 | 0.0104 | 0.0119 | 0.0108 | 0.0103 | ||
| GELF | 0.0106 | 0.0096 | 0.0091 | 0.0088 | 0.0106 | 0.0105 | 0.0096 | 0.0096 | ||
| MLE | 0.0098 | 0.0138 | 0.0098 | 0.0138 | 0.0109 | 0.0145 | 0.0088 | 0.0137 | ||
| Lindley | SELF | 0.0059 | 0.0130 | 0.0050 | 0.0120 | 0.0088 | 0.0150 | 0.0079 | 0.0142 | |
| LINEX | 0.0069 | 0.0121 | 0.0060 | 0.0110 | 0.0076 | 0.0147 | 0.0068 | 0.0135 | ||
| GELF | 0.0065 | 0.0128 | 0.0058 | 0.0117 | 0.0084 | 0.0146 | 0.0071 | 0.0129 | ||
| MCMC | SELF | 0.0059 | 0.0096 | 0.0050 | 0.0091 | 0.0089 | 0.0125 | 0.0081 | 0.0118 | |
| LINEX | 0.0048 | 0.0099 | 0.0045 | 0.0092 | 0.0077 | 0.0122 | 0.0070 | 0.0114 | ||
| GELF | 0.0051 | 0.0094 | 0.0046 | 0.0089 | 0.0071 | 0.0124 | 0.0065 | 0.0113 | ||
| MLE | 0.0150 | 0.0119 | 0.0150 | 0.0119 | 0.0162 | 0.0132 | 0.0150 | 0.0126 | ||
| Lindley | SELF | 0.0106 | 0.0108 | 0.0099 | 0.0100 | 0.0120 | 0.0115 | 0.0108 | 0.0099 | |
| LINEX | 0.0108 | 0.0103 | 0.0104 | 0.0102 | 0.0114 | 0.0124 | 0.0102 | 0.0110 | ||
| GELF | 0.0109 | 0.0109 | 0.0102 | 0.0108 | 0.0115 | 0.0128 | 0.0106 | 0.0107 | ||
| MCMC | SELF | 0.0083 | 0.0097 | 0.0079 | 0.0097 | 0.0092 | 0.0126 | 0.0087 | 0.0108 | |
| LINEX | 0.0086 | 0.0094 | 0.084 | 0.0094 | 0.0095 | 0.0121 | 0.0084 | 0.0109 | ||
| GELF | 0.0082 | 0.0092 | 0.0078 | 0.0096 | 0.0097 | 0.0119 | 0.0091 | 0.0111 | ||
| MLE | 0.0121 | 0.0119 | 0.0121 | 0.0119 | 0.0133 | 0.0135 | 0.0120 | 0.0121 | ||
| Lindley | SELF | 0.0104 | 0.0114 | 0.0099 | 0.0102 | 0.0120 | 0.0127 | 0.0108 | 0.0114 | |
| LINEX | 0.0102 | 0.0110 | 0.0096 | 0.0100 | 0.0112 | 0.0122 | 0.0106 | 0.0101 | ||
| GELF | 0.0108 | 0.0106 | 0.0094 | 0.0102 | 0.0124 | 0.0114 | 0.0114 | 0.0105 | ||
| MCMC | SELF | 0.0084 | 0.0104 | 0.0079 | 0.0100 | 0.0157 | 0.0151 | 0.0152 | 0.0148 | |
| LINEX | 0.0082 | 0.0102 | 0.0077 | 0.0096 | 0.0145 | 0.0133 | 0.0141 | 0.0130 | ||
| GELF | 0.0088 | 0.0094 | 0.0075 | 0.0092 | 0.0142 | 0.0127 | 0.0139 | 0.0122 | ||
| MLE | 0.0087 | 0.0140 | 0.0087 | 0.0140 | 0.0142 | 0.0151 | 0.0142 | 0.0151 | ||
| Lindley | SELF | 0.0084 | 0.0136 | 0.0080 | 0.0132 | 0.0135 | 0.0146 | 0.0132 | 0.0143 | |
| LINEX | 0.0073 | 0.0132 | 0.0069 | 0.0128 | 0.0124 | 0.0157 | 0.0120 | 0.0151 | ||
| GELF | 0.0077 | 0.0124 | 0.0074 | 0.0119 | 0.0117 | 0.0157 | 0.0112 | 0.0153 | ||
| MCMC | SELF | 0.0069 | 0.0120 | 0.0066 | 0.0116 | 0.0093 | 0.0152 | 0.0090 | 0.0148 | |
| LINEX | 0.0060 | 0.0116 | 0.0056 | 0.0110 | 0.0088 | 0.0113 | 0.0082 | 0.0111 | ||
| GELF | 0.0062 | 0.0113 | 0.0059 | 0.0109 | 0.0080 | 0.0148 | 0.0077 | 0.0141 | ||
| MLE | 0.0067 | 0.0136 | 0.0067 | 0.0136 | 0.0096 | 0.0142 | 0.0094 | 0.0139 | ||
| Lindley | SELF | 0.0036 | 0.0121 | 0.0029 | 0.0118 | 0.0094 | 0.0145 | 0.0091 | 0.0140 | |
| LINEX | 0.0028 | 0.0127 | 0.0024 | 0.0120 | 0.0092 | 0.0123 | 0.0089 | 0.0119 | ||
| GELF | 0.0022 | 0.0123 | 0.018 | 0.0111 | 0.0079 | 0.0119 | 0.0072 | 0.0111 | ||
| MCMC | SELF | 0.0026 | 0.0108 | 0.0020 | 0.0097 | 0.0060 | 0.0095 | 0.0058 | 0.0091 | |
| LINEX | 0.0025 | 0.0106 | 0.0018 | 0.0094 | 0.0051 | 0.0119 | 0.0049 | 0.0102 | ||
| GELF | 0.0021 | 0.0099 | 0.0016 | 0.0092 | 0.0048 | 0.0110 | 0.0044 | 0.0099 | ||
| MLE | 0.0107 | 0.0137 | 0.0107 | 0.0137 | 0.0125 | 0.0158 | 0.0121 | 0.0152 | ||
| Lindley | SELF | 0.0104 | 0.0132 | 0.0096 | 0.0120 | 0.0118 | 0.0156 | 0.0111 | 0.0150 | |
| LINEX | 0.0098 | 0.0134 | 0.0090 | 0.0125 | 0.0109 | 0.0163 | 0.0102 | 0.0158 | ||
| GELF | 0.0085 | 0.0140 | 0.0079 | 0.0130 | 0.0102 | 0.0161 | 0.0099 | 0.0156 | ||
| MCMC | SELF | 0.0100 | 0.0090 | 0.0092 | 0.0080 | 0.0110 | 0.0129 | 0.0105 | 0.0109 | |
| LINEX | 0.0102 | 0.0096 | 0.0090 | 0.0090 | 0.0105 | 0.0121 | 0.0101 | 0.0114 | ||
| GELF | 0.0104 | 0.0094 | 0.0099 | 0.0088 | 0.0109 | 0.0123 | 0.0102 | 0.0118 | ||
| MLE | 0.0157 | 0.0192 | 0.0157 | 0.0192 | 0.0173 | 0.0175 | 0.0173 | 0.0175 | ||
| Lindley | SELF | 0.0129 | 0.0193 | 0.0120 | 0.0187 | 0.0136 | 0.0156 | 0.0132 | 0.0150 | |
| LINEX | 0.0120 | 0.0172 | 0.0115 | 0.0167 | 0.0130 | 0.0153 | 0.0126 | 0.0148 | ||
| GELF | 0.0127 | 0.0181 | 0.0118 | 0.0170 | 0.0124 | 0.0144 | 0.0139 | 0.0140 | ||
| MCMC | SELF | 0.0119 | 0.0187 | 0.0110 | 0.0168 | 0.0115 | 0.0125 | 0.0110 | 0.0119 | |
| LINEX | 0.0120 | 0.0180 | 0.0109 | 0.0167 | 0.0104 | 0.0121 | 0.0100 | 0.0118 | ||
| GELF | 0.0122 | 0.0176 | 0.0111 | 0.0160 | 0.0109 | 0.0119 | 0.0103 | 0.0112 | ||
| MLE | 0.0127 | 0.0165 | 0.0127 | 0.0188 | 0.0145 | 0.0188 | 0.0141 | 0.0180 | ||
| Lindley | SELF | 0.0105 | 0.0162 | 0.0099 | 0.0165 | 0.0120 | 0.0180 | 0.0115 | 0.0175 | |
| LINEX | 0.0116 | 0.0164 | 0.0108 | 0.0156 | 0.0123 | 0.0178 | 0.0120 | 0.0170 | ||
| GELF | 0.0112 | 0.0166 | 0.0104 | 0.0128 | 0.0118 | 0.0147 | 0.0111 | 0.0141 | ||
| MCMC | SELF | 0.0104 | 0.0123 | 0.0099 | 0.0126 | 0.0107 | 0.0140 | 0.0102 | 0.0132 | |
| LINEX | 0.0105 | 0.0120 | 0.0099 | 0.0122 | 0.0111 | 0.0136 | 0.0107 | 0.0130 | ||
| GELF | 0.0107 | 0.0119 | 0.0094 | 0.0118 | 0.0113 | 0.0129 | 0.0108 | 0.0121 | ||
| CS | Method | ACI/BCI | CP | ACI/BCI | CP |
|---|---|---|---|---|---|
| MLE | 0.1488 | 0.9221 | 0.1494 | 0.9140 | |
| Prior-I | 0.1325 | 0.9285 | 0.1461 | 0.9187 | |
| Prior-II | 0.1302 | 0.9302 | 0.1402 | 0.9248 | |
| MLE | 0.1561 | 0.9240 | 0.1466 | 0.9231 | |
| Prior-I | 0.1423 | 0.9360 | 0.1440 | 0.9260 | |
| Prior-II | 0.1392 | 0.9389 | 0.1435 | 0.9288 | |
| MLE | 0.1502 | 0.9185 | 0.1604 | 0.9225 | |
| Prior-I | 0.1441 | 0.9204 | 0.1588 | 0.9302 | |
| Prior-II | 0.1402 | 0.9225 | 0.1568 | 0.9356 | |
| MLE | 0.1615 | 0.9360 | 0.1702 | 0.9280 | |
| Prior-I | 0.1540 | 0.9402 | 0.1680 | 0.9310 | |
| Prior-II | 0.1488 | 0.9456 | 0.1656 | 0.9338 | |
| MLE | 0.1593 | 0.9405 | 0.1658 | 0.9296 | |
| Prior-I | 0.1562 | 0.9554 | 0.1589 | 0.9355 | |
| Prior-II | 0.1485 | 0.9501 | 0.1545 | 0.9390 | |
| MLE | 0.1586 | 0.9340 | 0.1674 | 0.9168 | |
| Prior-I | 0.1462 | 0.9412 | 0.1580 | 0.9225 | |
| Prior-II | 0.1405 | 0.9456 | 0.1503 | 0.9298 | |
| MLE | 0.1669 | 0.9460 | 0.1788 | 0.9302 | |
| Prior-I | 0.1527 | 0.9494 | 0.1704 | 0.9374 | |
| Prior-II | 0.1486 | 0.9402 | 0.1688 | 0.9413 | |
| MLE | 0.1772 | 0.9420 | 0.1844 | 0.9325 | |
| Prior-I | 0.1688 | 0.9502 | 0.1814 | 0.9390 | |
| Prior-II | 0.1602 | 0.9556 | 0.1758 | 0.9457 | |
| MLE | 0.1631 | 0.9356 | 0.1717 | 0.9248 | |
| Prior-I | 0.1525 | 0.9440 | 0.1650 | 0.9335 | |
| Prior-II | 0.1517 | 0.9502 | 0.1602 | 0.9441 | |
| MLE | 0.1600 | 0.9340 | 0.1808 | 0.9185 | |
| Prior-I | 0.1584 | 0.9419 | 0.1758 | 0.9225 | |
| Prior-II | 0.1498 | 0.9496 | 0.1714 | 0.9302 | |
| MLE | 0.1671 | 0.9480 | 0.1813 | 0.9265 | |
| Prior-I | 0.1637 | 0.9502 | 0.1788 | 0.9224 | |
| Prior-II | 0.1613 | 0.9592 | 0.1712 | 0.9393 | |
| MLE | 0.1713 | 0.9440 | 0.1878 | 0.9224 | |
| Prior-I | 0.1690 | 0.9497 | 0.1817 | 0.9302 | |
| Prior-II | 0.1602 | 0.9541 | 0.1756 | 0.9425 | |
| Lindley | MCMC | |||||||
|---|---|---|---|---|---|---|---|---|
| MLE | SELF | LINEX | GELF | SELF | LINEX | GELF | ||
| CS1 | 0.5257 | 0.5251 | 0.52454 | 0.5253 | 0.5160 | 0.5159 | 0.5161 | |
| 0.3135 | 0.3133 | 0.3130 | 0.3133 | 0.3032 | 0.3029 | 0.3034 | ||
| CS2 | 0.5749 | 0.5632 | 0.5625 | 0.5630 | 0.5542 | 0.5540 | 0.5544 | |
| 0.3695 | 0.3588 | 0.3892 | 0.3597 | 0.3458 | 0.3451 | 0.3453 | ||
| ACI | BCI-I | BCI-II | BCI-III | ||
|---|---|---|---|---|---|
| CS1 | (0.3744 0.6798) | (0.3733 0.6790) | (0.3740 0.6792) | (0.3738 0.6790) | |
| (0.3845 0.6905) | (0.3843 0.6898) | (0.3839 0.6890) | (0.3836 0.6887) | ||
| CS2 | (0.1652 0.5012) | (0.1693 0.5000) | (0.1690 0.4998) | (0.1688 0.4987) | |
| (0.1748 0.5162) | (0.1741 0.5127) | (0.1737 0.5120) | (0.1735 0.5118) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yılmaz, A. Bayesian Estimation of Multicomponent Stress–Strength Model Using Progressively Censored Data from the Inverse Rayleigh Distribution. Entropy 2025, 27, 1095. https://doi.org/10.3390/e27111095
Yılmaz A. Bayesian Estimation of Multicomponent Stress–Strength Model Using Progressively Censored Data from the Inverse Rayleigh Distribution. Entropy. 2025; 27(11):1095. https://doi.org/10.3390/e27111095
Chicago/Turabian StyleYılmaz, Asuman. 2025. "Bayesian Estimation of Multicomponent Stress–Strength Model Using Progressively Censored Data from the Inverse Rayleigh Distribution" Entropy 27, no. 11: 1095. https://doi.org/10.3390/e27111095
APA StyleYılmaz, A. (2025). Bayesian Estimation of Multicomponent Stress–Strength Model Using Progressively Censored Data from the Inverse Rayleigh Distribution. Entropy, 27(11), 1095. https://doi.org/10.3390/e27111095

