Seizure Type Classification Based on Hybrid Feature Engineering and Mutual Information Analysis Using Electroencephalogram
Abstract
1. Introduction
2. Materials and Methods
2.1. EEG Recordings and Preprocessing
2.2. Multi-Domain Feature Extraction
2.2.1. Statistical Features
2.2.2. Sample Entropy
2.2.3. Wavelet Energy
2.2.4. Hurst Index
2.2.5. Hjorth Parameters
2.3. Feature Selection
2.4. Classification Models
2.4.1. Support Vector Machine (SVM)
2.4.2. K-Nearest Neighbor (KNN)
2.4.3. Decision Tree (DT)
2.4.4. Random Forest (RF)
2.4.5. Light Gradient Boosting Machine (LightGBM)
2.4.6. Categorical Boosting (CatBoost)
2.4.7. Extreme Gradient Boosting (XGBoost)
2.5. Evaluation Methodology
3. Results
3.1. Classification Results
3.2. Confusion Matrices
3.3. Feature Importance Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EEG | Electroencephalogram |
FNSZ | Focal non-specific seizure |
ABSZ | Absence seizure |
CPSZ | Complex partial seizure |
TCSZ | Tonic clonic seizure |
GNSZ | Generalized non-specific seizure |
TNSZ | Tonic seizure |
MI | Mutual information |
TUSZ | Temple University Hospital Seizure Corpus |
SVM | Support vector machine |
KNN | K-nearest neighbor |
DT | Decision tree |
RF | Random forest |
LightGBM | Light gradient boosting machine |
CatBoost | Categorical boosting |
XGBoost | Extreme gradient boosting |
AUC | Area under the receiver operating characteristic curve |
References
- Ono, T.; Galanopoulou, A.S. Epilepsy and epileptic syndrome. Adv. Exp. Med. Biol. 2012, 724, 99–113. [Google Scholar] [PubMed]
- Hirtz, D.; Thurman, D.J.; Gwinn-Hardy, K.; Mohamed, M.; Chaudhuri, A.R.; Zalutsky, R. How common are the “common” neurologic disorders? Neurology 2007, 68, 326–337. [Google Scholar] [CrossRef]
- Su, Z.; Lu, J.; Shi, Y.; Qi, B.; Guo, Z. Global, regional, and national children and adolescent epilepsy burden, 1990–2021: An analysis based on the global burden of disease study 2021. Ann. Med. 2025, 57, 2534087. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshé, S.L.; et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Rahman, A.; Shimul, W.; Toufiq, M.; Eyad, J.; Sheema, C.; Khadijah, A.; Ahmed, M. Seizures and Epilepsy: An Overview for UK Medical Students. Cureus 2024, 16, e70654. [Google Scholar] [CrossRef]
- Thijs, R.D.; Surges, R.; O’Brien, T.J.; Sander, J.W. Epilepsy in adults. Lancet 2019, 393, 689–701. [Google Scholar] [CrossRef]
- Fisher, R.S.; Acevedo, C.; Arzimanoglou, A.; Bogacz, A.; Cross, J.H.; Elger, C.E.; Engel, J., Jr.; Forsgren, L.; French, J.A.; Glynn, M.; et al. ILAE official report: A practical clinical definition of epilepsy. Epilepsia 2014, 55, 475–482. [Google Scholar] [CrossRef]
- Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adeli, H.; Subha, D.P. Automated EEG-based screening of depression using deep convolutional neural network. Comput. Methods Programs Biomed. 2018, 161, 103–113. [Google Scholar] [CrossRef]
- Joshi, R.K.; Kumar, V.; Agrawal, M.; Rao, A.; Mohan, L.; Jayachandra, M.; Pandya, H.J. Spatiotemporal analysis of interictal eeg for automated seizure detection and classification. Biomed. Signal Process. Control. 2023, 79 Pt 1, 104086. [Google Scholar] [CrossRef]
- Chawla, D.; Sharma, E.; Rajab, N.; Łajczak, P.; Silva, Y.P.; Baptista, J.M.; Pomianoski, B.W.; Ahmed, A.R.; Majeed, M.w.; de Sousa, Y.G.; et al. Utilizing machine learning techniques for eeg assessment in the diagnosis of epileptic seizures in the brain: A systematic review and meta-analysis. Seizure Eur. J. Epilepsy 2025, 126, 16–23. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Q.Q.; Chen, H.; Hu, X.Q.; Li, W.G.; Bai, Y.; Han, J.X.; Wang, Y.; Liang, Z.H.; Chen, D.; et al. The applied principles of EEG analysis methods in neuroscience and clinical neurology. Mil. Med. Res. 2023, 10, 67. [Google Scholar] [CrossRef]
- Feng, J.; Jia, W.; Li, Z. Electroencephalography: A valuable tool for assessing motor impairment and recovery post-stroke. J. Neurosci. Methods 2025, 422, 110518. [Google Scholar] [CrossRef]
- Dabbabi, T.; Bouafif, L.; Cherif, A. A review of non invasive methods of brain activity measurements via EEG signals analysis. In Proceedings of the 2023 IEEE International Conference on Advanced Systems and Emergent Technologies, Hammamet, Tunisia, 29 April–1 May 2023. [Google Scholar]
- Siddiqui, M.K.; Morales-Menendez, R.; Huang, X.; Hussain, N. A review of epileptic seizure detection using machine learning classifiers. Brain Inform. 2020, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Mourad, R.; Diab, A.; Merhi, Z.; Khalil, M.; Jeannès, R.L.B. Machine and deep learning methods for epileptic seizure recognition using eeg data: A systematic review. Brain Res. 2025, 1864, 149797. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.; Simmons, A.; Rivera-Villicana, J.; Barnett, S.; Sivathamboo, S.; Perucca, P.; Ge, Z.; Kwan, P.; Kuhlmann, L.; Vasa, R.; et al. EEG datasets for seizure detection and prediction-A review. Epilepsia Open 2023, 8, 252–267. [Google Scholar] [CrossRef]
- Shoeibi, A.; Khodatars, M.; Ghassemi, N.; Jafari, M.; Acharya, U.R. Epileptic seizures detection using deep learning techniques: A review. Int. J. Environ. Res. Public Health 2021, 18, 15780. [Google Scholar] [CrossRef]
- Lo Giudice, M.; Varone, G.; Ieracitano, C.; Mammone, N.; Tripodi, G.G.; Ferlazzo, E.; Gasparini, S.; Aguglia, U.; Morabito, F.C. Permutation Entropy-Based Interpretability of Convolutional Neural Network Models for Interictal EEG Discrimination of Subjects with Epileptic Seizures vs. Psychogenic Non-Epileptic Seizures. Brain Sci. 2022, 24, 102. [Google Scholar] [CrossRef]
- Saputro, I.R.D.; Maryati, N.D.; Solihati, S.R.; Wijayanto, I.; Patmasari, R. Seizure type classification on eeg signal using support vector machine. J. Phys. Conf. Ser. 2019, 1201, 012065. [Google Scholar] [CrossRef]
- Wijayanto, I.; Hartanto, R.; Nugroho, H.A.; Winduratna, B. Seizure Type Detection in Epileptic EEG Signal using Empirical Mode Decomposition and Support Vector Machine. In Proceedings of the 2019 International Seminar on Intelligent Technology and Its Applications, Surabaya, Indonesia, 28–29 August 2019. [Google Scholar]
- Roy, S.; Asif, U.; Tang, J.; Harrer, S. Seizure type classification using eeg signals and machine learning: Setting a benchmark. In Proceedings of the 2020 IEEE Signal Processing in Medicine and Biology Symposium, Iowa City, IA, USA, 20–24 July 2020. [Google Scholar]
- Albaqami, H.; Hassan, G.; Datta, A. Comparison of WPD, DWT and DTCWT for Multi-Class Seizure Type Classification. In Proceedings of the 2021 IEEE Signal Processing in Medicine and Biology Symposium, Philadelphia, PA, USA, 4 December 2021. [Google Scholar]
- Obeid, I.; Picone, J. The Temple University Hospital EEG Data Corpus. Front. Neurosci. 2016, 10, 196. [Google Scholar] [CrossRef] [PubMed]
- Ochal, D.; Rahman, S.; Ferrell, S.; Elseify, T.; Obeid, I.; Picone, J. The Temple University Hospital EEG Corpus: Annotation Guidelines. Inst. Signal Inf. Process. Rep. 2020, 1, 1–28. [Google Scholar]
- Alexandre, G.; Martin, L.; Eric, L.; Denis, A.E.; Daniel, S.; Christian, B.; Roman, G.; Mainak, J.; Teon, B.; Lauri, P.; et al. MEG and EEG data analysis with MNE-Python. Front. Neurosci. 2013, 7, 267. [Google Scholar] [CrossRef]
- Subasi, A. EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 2007, 32, 1084–1093. [Google Scholar] [CrossRef]
- Joanes, D.N.; Gill, C.A. Comparing measures of sample skewness and kurtosis. J. R. Stat. Soc. 2010, 47. [Google Scholar] [CrossRef]
- Lake, D.E.; Richman, J.S.; Griffin, M.P.; Moorman, J.R. Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2002, 283, R789. [Google Scholar] [CrossRef] [PubMed]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.-Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef]
- Acharya, U.R.; Molinari, F.; Sree, S.V.; Chattopadhyay, S.; Ng, K.H.; Suris, J.S. Automated diagnosis of epileptic EEG using entropies. Biomed. Signal Process. Control 2012, 7, 401–408. [Google Scholar] [CrossRef]
- Adeli, H.; Zhou, Z.; Dadmehr, N. Analysis of EEG records in an epileptic patient using wavelet transform. J. Neurosci. Methods 2003, 123, 69–87. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Gommers, R.; Waselewski, F.; Wohlfahrt, K.; O’Leary, A. Pywavelets: A python package for wavelet analysis. J. Open Source Softw. 2019, 4, 01237. [Google Scholar] [CrossRef]
- Hurst, H. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–799. [Google Scholar] [CrossRef]
- Hjorth, B. EEG analysis based on time series properties. Electroencephalogr. Clin. Neurophysiol. 1970, 29, 306–310. [Google Scholar] [CrossRef]
- Battiti, R. Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Netw. 1994, 5, 537–550. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Guler, I.; Ubeyli, E.D. Multiclass support vector machines for eeg-signals classification. IEEE Trans. Inf. Technol. Biomed. 2007, 11, 117–126. [Google Scholar] [CrossRef]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Premavathi, T.; Shukla, M.; Jadeja, R. Predicting patient-specific epileptic seizures from scalp EEG signals using kNN model with transfer learning. IEEE Access 2024, 12, 196728–196739. [Google Scholar] [CrossRef]
- Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ke, G.L.; Meng, Q.; Finley, T.; Wang, T.F.; Chen, W.; Ma, W.D.; Ye, Q.W.; Liu, T.Y. LightGBM: A highly efficient gradient boosting decision tree. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Saranya, D.; Bharathi, A. Automatic detection of epileptic seizure using machine learning-based IANFIS-LightGBM system. J. Intell. Fuzzy Syst. Appl. Eng. Technol. 2024, 1, 46. [Google Scholar] [CrossRef]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features. In Proceedings of the 32st International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 2–8 December 2018. [Google Scholar]
- Chen, T.Q.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Fawcett, T. An introduction to roc analysis. Pattern Recognit. Lett. 2005, 27, 861–874. [Google Scholar] [CrossRef]
- Guo, L.; Rivero, D.; Pazos, A. Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J. Neurosci. Methods 2010, 193, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.F.; Hu, P.P.; Yang, B.; Yang, Y.; Gao, D.; Zeng, G.Q.H.; Wang, K. Using scalp EEG to predict seizure recurrence and electrical status epilepticus in children with idiopathic focal epilepsy. Seizure Eur. J. Epilepsy 2024, 118, 8–16. [Google Scholar] [CrossRef]
- Zweiphenning, W.J.E.M.; Keijzer, H.M.; van Diessen, E.; van ’t Klooster, M.A.; van Klink, N.E.C.; Leijten, F.S.S.; van Rijen, P.C.; van Putten, M.J.A.M.; Braun, K.P.J.; Zijlmans, M. Increased gamma and decreased fast ripple connections of epileptic tissue: A high-frequency directed network approach. Epilepsia 2019, 60, 1908–1920. [Google Scholar] [CrossRef] [PubMed]
- Janca, R.; Jahodova, A.; Hlinka, J.; Jezdik, P.; Jiruska, P. Ictal gamma-band interactions localize ictogenic nodes of the epileptic network in focal cortical dysplasia. Clin. Neurophysiol. 2021, 132, 1927–1936. [Google Scholar] [CrossRef] [PubMed]
Seizure Type | Patients | Seizures | Total Duration(s) | Seizure Duration Range(s) |
---|---|---|---|---|
FNSZ | 15 | 100 | 5726.88 | 15.95–1552.74 |
ABSZ | 10 | 78 | 637.70 | 14.66–202.68 |
CPSZ | 19 | 100 | 34,771.30 | 45.74–1478.29 |
TCSZ | 6 | 47 | 839.45 | 40.62–748.94 |
GNSZ | 20 | 100 | 59,616.00 | 21.35–1659.00 |
TNSZ | 8 | 47 | 5502.97 | 49.90–748.94 |
Classifier | Accuracy | F1-Score | Precision | Recall | AUC | Time (s) |
---|---|---|---|---|---|---|
SVM | 0.4709 ± 0.0029 | 0.4618 ± 0.0034 | 0.6249 ± 0.0037 | 0.4709 ± 0.0029 | 0.8148 ± 0.0026 | 32,984.36 |
KNN | 0.5256 ± 0.0022 | 0.5397 ± 0.0024 | 0.5870 ± 0.0038 | 0.5256 ± 0.0022 | 0.7665 ± 0.0031 | 65.80 |
Decision Tree | 0.7899 ± 0.0054 | 0.7897 ± 0.0053 | 0.7896 ± 0.0053 | 0.7899 ± 0.0054 | 0.8544 ± 0.0039 | 102.09 |
LightGBM | 0.8595 ± 0.0030 | 0.8612 ± 0.0029 | 0.8651 ± 0.0027 | 0.8595 ± 0.0030 | 0.9772 ± 0.0008 | 6208.87 |
RF | 0.8684 ± 0.0022 | 0.8664 ± 0.0022 | 0.8686 ± 0.0023 | 0.8684 ± 0.0022 | 0.9782 ± 0.0007 | 228.99 |
CatBoost | 0.8641 ± 0.0034 | 0.8658 ± 0.0033 | 0.8697 ± 0.0030 | 0.8641 ± 0.0034 | 0.9789 ± 0.0009 | 532.23 |
XGBoost | 0.8710 ± 0.0027 | 0.8721 ± 0.0026 | 0.8744 ± 0.0025 | 0.8710 ± 0.0027 | 0.9797 ± 0.0007 | 69.39 |
Null model | 0.0149 ± 0.0012 | 0.0004 ± 0.0001 | 0.0002 ± 0.0000 | 0.0149 ± 0.0012 | 0.5000 ± 0.0000 | 1.79 |
m | r | Accuracy | F1-Score | Precision | Recall | AUC |
---|---|---|---|---|---|---|
1 | 0.8659 ± 0.0024 | 0.8672 ± 0.0024 | 0.8699 ± 0.0024 | 0.8659 ± 0.0024 | 0.9782 ± 0.0009 | |
0.8659 ± 0.0024 | 0.8672 ± 0.0024 | 0.8699 ± 0.0024 | 0.8659 ± 0.0024 | 0.9782 ± 0.0009 | ||
0.8659 ± 0.0024 | 0.8672 ± 0.0024 | 0.8699 ± 0.0024 | 0.8659 ± 0.0024 | 0.9782 ± 0.0009 | ||
2 | 0.8693 ± 0.0035 | 0.8705 ± 0.0034 | 0.8729 ± 0.0033 | 0.8693 ± 0.0035 | 0.9793 ± 0.0008 | |
0.8699 ± 0.0036 | 0.8710 ± 0.0035 | 0.8733 ± 0.0035 | 0.8699 ± 0.0036 | 0.9796 ± 0.0007 | ||
0.8710 ± 0.0027 | 0.8721 ± 0.0026 | 0.8744 ± 0.0025 | 0.8710 ± 0.0027 | 0.9797 ± 0.0007 |
k | Accuracy | F1-Score | Precision | Recall | AUC | Time (s) |
---|---|---|---|---|---|---|
10 | 0.7561 ± 0.0040 | 0.7602 ± 0.0037 | 0.7719 ± 0.0031 | 0.7561 ± 0.0040 | 0.9397 ± 0.0017 | 46.43 |
20 | 0.8463 ± 0.0030 | 0.8480 ± 0.0029 | 0.8521 ± 0.0029 | 0.8463 ± 0.0030 | 0.9729 ± 0.0009 | 53.16 |
30 | 0.8710 ± 0.0027 | 0.8721 ± 0.0026 | 0.8744 ± 0.0025 | 0.8710 ± 0.0027 | 0.9797 ± 0.0007 | 69.39 |
40 | 0.8868 ± 0.0027 | 0.8875 ± 0.0027 | 0.8889 ± 0.0027 | 0.8868 ± 0.0027 | 0.9836 ± 0.0007 | 77.17 |
50 | 0.8862 ± 0.0025 | 0.8869 ± 0.0025 | 0.8883 ± 0.0025 | 0.8862 ± 0.0025 | 0.9837 ± 0.0007 | 88.24 |
60 | 0.8899 ± 0.0027 | 0.8905 ± 0.0027 | 0.8917 ± 0.0026 | 0.8899 ± 0.0027 | 0.9844 ± 0.0007 | 97.95 |
Step Size (s) | Accuracy | F1-Score | Precision | Recall | AUC | Time (s) |
---|---|---|---|---|---|---|
0.2 | 0.8645 ± 0.0017 | 0.8662 ± 0.0016 | 0.8701 ± 0.0015 | 0.8645 ± 0.0017 | 0.9795 ± 0.0004 | 159.66 |
0.4 | 0.8583 ± 0.0020 | 0.8599 ± 0.0020 | 0.8631 ± 0.0021 | 0.8583 ± 0.0020 | 0.9766 ± 0.0010 | 80.60 |
0.5 | 0.8710 ± 0.0027 | 0.8721 ± 0.0026 | 0.8744 ± 0.0025 | 0.8710 ± 0.0027 | 0.9797 ± 0.0007 | 69.39 |
0.6 | 0.8532 ± 0.0057 | 0.8546 ± 0.0056 | 0.8572 ± 0.0054 | 0.8532 ± 0.0057 | 0.9741 ± 0.0015 | 57.22 |
0.8 | 0.8495 ± 0.0061 | 0.8507 ± 0.0060 | 0.8532 ± 0.0057 | 0.8495 ± 0.0061 | 0.9724 ± 0.0014 | 46.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, Y. Seizure Type Classification Based on Hybrid Feature Engineering and Mutual Information Analysis Using Electroencephalogram. Entropy 2025, 27, 1057. https://doi.org/10.3390/e27101057
Miao Y. Seizure Type Classification Based on Hybrid Feature Engineering and Mutual Information Analysis Using Electroencephalogram. Entropy. 2025; 27(10):1057. https://doi.org/10.3390/e27101057
Chicago/Turabian StyleMiao, Yao. 2025. "Seizure Type Classification Based on Hybrid Feature Engineering and Mutual Information Analysis Using Electroencephalogram" Entropy 27, no. 10: 1057. https://doi.org/10.3390/e27101057
APA StyleMiao, Y. (2025). Seizure Type Classification Based on Hybrid Feature Engineering and Mutual Information Analysis Using Electroencephalogram. Entropy, 27(10), 1057. https://doi.org/10.3390/e27101057