Secure Virtual Network Provisioning over Key Programmable Optical Networks
Abstract
1. Introduction
2. Network Architecture
2.1. Securing Virtual Networks with PLS-Based Keys
2.2. Layered Architecture for Secure Virtual Network Provisioning over KPONs
3. Heuristic Algorithm Design
3.1. Network Model
3.2. KA-SVNP Algorithm
Algorithm 1: KA-SVNP algorithm | |
Input: , , , , , | |
Output: , , | |
1: | initialize ; |
2: | for each incoming secure virtual network request do |
3: | for each virtual node do |
4: | perform deterministic node mapping to map the virtual node from the secure virtual network request onto a substrate node, where the assignment is realized for the virtual node with the same location as the substrate node; |
5: | end for |
6: | for each virtual link do |
7: | compute the alternative physical paths with the K-shortest-path approach; |
8: | record the alternative physical paths in ; |
9: | for each alternative physical path do |
10: | search the substrate links on path and record them in ; |
11: | search the real-time available information-theoretically secure key resources for each substrate link along the physical path ; |
12: | search the real-time available bandwidth resources for each substrate link along the physical path ; |
13: | compute the real-time available information-theoretically secure key resources for the physical path ; |
14: | ; |
15: | if do |
16: | remove this physical path from ; |
17: | end if |
18: | if the bandwidth requirement cannot be satisfied do |
19: | remove this physical path from ; |
20: | end if |
21: | end for |
22: | if do |
23: | mark ; |
24: | select the alternative physical path with the maximum value of in as the final physical path for ; |
25: | else |
26: | mark ; |
27: | break; |
28: | end if |
29: | end for |
30: | if do |
31: | record the secure virtual network request in ; |
32: | allocate the information-theoretically secure key resources and the bandwidth resources with the first-fit approach; |
33: | update the status of information-theoretically secure key resources and bandwidth resources; |
34: | else |
35: | the secure virtual network request is failed; |
36: | end if |
37: | end for |
38: | estimate the success probability: ; |
39: | return , , . |
4. Evaluation and Analysis
4.1. Emulation Results for the Latency
4.2. Simulation Results for the Success Probability of Secure Virtual Network Requests
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Skorin-Kapov, N.; Furdek, M.; Zsigmond, S.; Wosinska, L. Physical-layer security in evolving optical networks. IEEE Commun. Mag. 2016, 54, 110–117. [Google Scholar] [CrossRef]
- Kitayama, K.-I.; Sasaki, M.; Araki, S.; Tsubokawa, M.; Tomita, A.; Inoue, K.; Harasawa, K.; Nagasako, Y.; Takada, A. Security in photonic networks: Threats and security enhancement. J. Light. Technol. 2011, 29, 3210–3222. [Google Scholar] [CrossRef]
- Li, Y.; Hua, N.; Li, J.; Zhong, Z.; Li, S.; Zhao, C.; Xue, X.; Zheng, X. Optical spectrum feature analysis and recognition for optical network security with machine learning. Opt. Express 2019, 27, 24808–24827. [Google Scholar] [CrossRef]
- Engelmann, A.; Jukan, A. Toward all-optical layered encryption: A feasibility analysis of optical stream cipher. IEEE Trans. Inf. Foren. Sec. 2019, 14, 2689–2704. [Google Scholar] [CrossRef]
- Chen, F.; Song, M.; Zhou, F.; Zhu, Z. Security-aware planning of packet-over-optical networks in consideration of OTN encryption. IEEE Trans. Netw. Service Manag. 2021, 18, 3209–3220. [Google Scholar] [CrossRef]
- Zhao, A.; Jiang, N.; Liu, S.; Zhang, Y.; Qiu, K. Physical layer encryption for WDM optical communication systems using private chaotic phase scrambling. J. Light. Technol. 2021, 39, 2288–2295. [Google Scholar] [CrossRef]
- Lv, Q.; Zhu, Z. On the multilayer planning of filterless optical networks with OTN encryption. IEEE/ACM Trans. Netw. 2023, 31, 2529–2544. [Google Scholar] [CrossRef]
- Gill, S.S.; Kumar, A.; Singh, H.; Singh, M.; Kaur, K.; Usman, M.; Buyya, R. Quantum computing: A taxonomy, systematic review and future directions. Softw.-Pract. Exp. 2022, 52, 66–114. [Google Scholar] [CrossRef]
- Yang, Z.; Zolanvari, M.; Jain, R. A survey of important issues in quantum computing and communications. IEEE Commun. Surv. Tutor. 2023, 25, 1059–1094. [Google Scholar] [CrossRef]
- Yoshida, M.; Kan, T.; Kasai, K.; Hirooka, T.; Nakazawa, M. 10 Tbit/s QAM quantum noise stream cipher coherent transmission over 160 km. J. Light. Technol. 2021, 39, 1056–1063. [Google Scholar] [CrossRef]
- Tanizawa, K.; Futami, F. IF-over-fiber transmission of OFDM quantum-noise randomized PSK cipher for physical layer encryption of wireless signals. J. Light. Technol. 2022, 40, 1698–1704. [Google Scholar] [CrossRef]
- Sun, J.; Jiang, L.; Yi, A.; Feng, J.; Deng, X.; Pan, W.; Luo, B.; Yan, L. Experimental demonstration of 201.6-Gbit/s coherent probabilistic shaping QAM transmission with quantum noise stream cipher over a 1200-km standard single mode fiber. Opt. Express 2023, 31, 11344–11353. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhu, K.; Wang, W.; Zhao, Y.; Zhang, J. Analysis of the encryption penalty in a QAM-based quantum noise stream cipher. Opt. Express 2023, 31, 19006–19020. [Google Scholar] [CrossRef]
- Lo, H.-K.; Curty, M.; Tamaki, K. Secure quantum key distribution. Nat. Photonics 2014, 8, 595–604. [Google Scholar] [CrossRef]
- Pirandola, S.; Andersen, U.L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.; et al. Advances in quantum cryptography. Adv. Opt. Photonics 2020, 12, 1012–1236. [Google Scholar] [CrossRef]
- Xu, F.; Ma, X.; Zhang, Q.; Lo, H.-K.; Pan, J.-W. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 2020, 92, 025002. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, Y.; Wang, Q.; Zhang, J.; Ng, S.X.; Hanzo, L. The evolution of quantum key distribution networks: On the road to the Qinternet. IEEE Commun. Surv. Tutor. 2022, 24, 839–894. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, H.; Zhang, J. Key programmable optical networks (KPON) with OpenFlow-based key distribution. In Proceedings of the Asia Communications and Photonics Conference, Wuhan, China, 2–5 November 2016; AF2A.139. [Google Scholar]
- Fischer, A.; Botero, J.F.; Beck, M.T.; de Meer, H.; Hesselbach, X. Virtual network embedding: A survey. IEEE Commun. Surv. Tutor. 2013, 15, 1888–1906. [Google Scholar] [CrossRef]
- Gong, L.; Zhu, Z. Virtual optical network embedding (VONE) over elastic optical networks. J. Light. Technol. 2014, 32, 450–460. [Google Scholar] [CrossRef]
- Gong, L.; Jiang, H.; Wang, Y.; Zhu, Z. Novel location-constrained virtual network embedding LC-VNE algorithms towards integrated node and link mapping. IEEE/ACM Trans. Netw. 2016, 24, 3648–3661. [Google Scholar] [CrossRef]
- Fan, W.; Xiao, F.; Chen, X.; Cui, L.; Yu, S. Efficient virtual network embedding of cloud-based data center networks into optical networks. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 2793–2808. [Google Scholar] [CrossRef]
- International Telecommunication Union. Quantum Key Distribution Networks—Key Management; ITU-T Recommendation Y.3803; International Telecommunication Union: Geneva, Switzerland, 2020. [Google Scholar]
- Aguado, A.; Davis, M.; Peng, S.; Álvarez, M.V.; López, V.; Szyrkowiec, T.; Autenrieth, A.; Vilalta, R.; Mayoral, A.; Muñoz, R.; et al. Dynamic virtual network reconfiguration over SDN orchestrated multitechnology optical transport domains. J. Light. Technol. 2016, 34, 1933–1938. [Google Scholar] [CrossRef]
- Li, H.; Ota, K.; Dong, M. Virtual network recognition and optimization in SDN-enabled cloud environment. IEEE Trans. Cloud Comput. 2021, 9, 834–843. [Google Scholar] [CrossRef]
- Channegowda, M.; Nejabati, R.; Fard, M.R.; Peng, S.; Amaya, N.; Zervas, G.; Simeonidou, D.; Vilalta, R.; Casellas, R.; Martínez, R.; et al. Experimental demonstration of an OpenFlow based software-defined optical network employing packet, fixed and flexible DWDM grid technologies on an international multi-domain testbed. Opt. Express 2013, 21, 5487–5498. [Google Scholar] [CrossRef]
- Cvijetic, N.; Tanaka, A.; Ji, P.N.; Sethuraman, K.; Murakami, S.; Wang, T. SDN and OpenFlow for dynamic flex-grid optical access and aggregation networks. J. Light. Technol. 2014, 32, 864–870. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, Y.; Wang, W.; Wang, H.; Yu, X.; Zhang, J.; Tornatore, M.; Wu, Y.; Mukherjee, B. Resource allocation in optical networks secured by quantum key distribution. IEEE Commun. Mag. 2018, 56, 130–137. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, Y.; Li, J.; Lin, R.; Zhang, J.; Chen, J. Hybrid trusted/untrusted relay-based quantum key distribution over optical backbone networks. IEEE J. Sel. Areas Commun. 2021, 39, 2701–2718. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Jiang, H.; Li, J.; Liang, Z. Secure Virtual Network Provisioning over Key Programmable Optical Networks. Entropy 2025, 27, 1042. https://doi.org/10.3390/e27101042
Wang X, Jiang H, Li J, Liang Z. Secure Virtual Network Provisioning over Key Programmable Optical Networks. Entropy. 2025; 27(10):1042. https://doi.org/10.3390/e27101042
Chicago/Turabian StyleWang, Xiaoyu, Hao Jiang, Jianwei Li, and Zhonghua Liang. 2025. "Secure Virtual Network Provisioning over Key Programmable Optical Networks" Entropy 27, no. 10: 1042. https://doi.org/10.3390/e27101042
APA StyleWang, X., Jiang, H., Li, J., & Liang, Z. (2025). Secure Virtual Network Provisioning over Key Programmable Optical Networks. Entropy, 27(10), 1042. https://doi.org/10.3390/e27101042