Corticomuscular Coupling Analysis in Archery Based on Transfer Entropy
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection and Preprocessing
2.3. TE Between EEG and EMG Signals
2.4. Statisitical Analysis
3. Results and Discussion
3.1. Differences in Across Different Frequency Bands
3.2. The Correlation Between and Archery Performance
3.3. Differences in Across Different Brain Regions
3.4. The Correlation Between TE and Number of Arrows Shot
3.5. Comparison of TE and Coherence
3.6. Further Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EEG | Electroencephalogram |
EMG | Electromyogram |
TE | Transfer entropy |
Transfer entropy from EEG to EMG | |
Transfer entropy from EMG to EEG |
References
- Peng, J.; Zikereya, T.; Shao, Z.; Shi, K. The neuromechanical of Beta-band corticomuscular coupling within the human motor system. Front. Neurosci. 2024, 18, 1441002. [Google Scholar] [CrossRef]
- Guo, Z.; Lin, J.; Simeone, O.; Mills, K.; Cvetković, Z.; McClelland, V. Cross-frequency cortex-muscle interactions are abnormal in young people with dystonia. Brain Commun. 2024, 6, fcae061. [Google Scholar]
- Liu, J.; Sheng, Y.; Zeng, J.; Liu, H. Corticomuscular coherence for upper arm flexor and extensor muscles during isometric exercise and cyclically isokinetic movement. Front. Neurosci. 2019, 13, 522. [Google Scholar] [CrossRef] [PubMed]
- Bourguignon, M.; Jousmäki, V.; Dalal, S.S.; Jerbi, K.; De Tiège, X. Coupling between human brain activity and body movements Insights from non-invasive electromagnetic recordings. NeuroImage 2019, 203, 116177. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Gong, A.; Qu, Y.; Xiao, H.; Wu, J.; Nan, W.; Jiang, C.; Fu, Y. Research on top archer’s EEG microstates and source analysis in different states. Brain Sci. 2022, 12, 1017. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Gong, A.; Qu, Y.; Bao, A.; Wu, J.; Jiang, C.; Fu, Y. From expert to elite?—Research on top archer’s EEG network topology. Front. Hum. Neurosci. 2022, 16, 759330. [Google Scholar] [CrossRef]
- Guo, F.; Niu, M.; Hanson, N.J.; Guo, J.; Zhou, K.; Zhao, T.; Ren, Y. Enhancing motor skill learning through multiple sessions of online high-definition transcranial direct current stimulation in healthy adults: Insights from EEG power spectrum. Cereb. Cortex 2024, 34, bhae395. [Google Scholar] [CrossRef]
- Avila, E.; Williams, S.; Disselhorst-Klug, C. Advances in EMG measurement techniques, analysis procedures, and the impact of muscle mechanics on future requirements for the methodology. J. Biomech. 2023, 156, 111687. [Google Scholar] [CrossRef]
- Brambilla, C.; Pirovano, I.; Mira, R.; Rizzo, G.; Scano, A.; Mastropietro, A. Combined use of EMG and EEG techniques for neuromotor assessment in rehabilitative applications: A systematic review. Sensors 2021, 21, 7014. [Google Scholar] [CrossRef]
- Liang, T.; Zhang, Q.; Liu, X.; Lou, C.; Liu, X.; Wang, H. Time-frequency maximal information coefficient method and its application to functional corticomuscular coupling. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2515–2524. [Google Scholar] [CrossRef]
- Liu, J.; Tan, G.; Sheng, Y.; Liu, H. Multiscale transfer spectral entropy for quantifying corticomuscular interaction. IEEE J. Biomed. Health Inform. 2021, 25, 2281–2292. [Google Scholar]
- Liang, T.; Zhang, Q.; Hong, L.; Liu, X.; Dong, B.; Wang, H. Directed information flow analysis reveals muscle fatigue-related changes in muscle networks and corticomuscular coupling. Front. Neurosci. 2021, 15, 750936. [Google Scholar] [CrossRef]
- Guo, Z.; McClell, V.M.; Simeone, O.; Mills, K.R.; Cvetkovic, Z. Multiscale wavelet transfer entropy with application to corticomuscular coupling analysis. IEEE Trans. Biomed. Eng. 2021, 69, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Mendez, C.D.; Blanco-Diaz, C.F.; Rivera-Flor, H.; De Souza, A.F.; Jaramillo-Isaza, S.; Ruiz-Olaya, A.F.; Bastos-Filho, T.F. Coupling effects of cross-corticomuscular association during object manipulation tasks on different haptic sensations. NeuroSci 2023, 4, 195–210. [Google Scholar] [CrossRef] [PubMed]
- Roeder, L.; Breakspear, M.; Kerr, G.K.; Boonstra, T.W. Dynamics of brain-muscle networks reveal effects of age and somatosensory function on gait. iScience 2024, 27, 109162. [Google Scholar] [CrossRef] [PubMed]
- Andréia, A.; Renato, M.; Rob, D.; Federico, G.; Lisanne, B.; Paulo, C.; Tibor, H. Corticomuscular and intermuscular coherence as a function of age and walking balance difficulty. Neurobiol. Aging 2024, 141, 85–101. [Google Scholar] [CrossRef]
- Zhao, H.; Hao, S.; Zhang, P.; He, S.; Wehmeyer, L.; Feng, Z.; Xu, L.; Zhan, S.; Liu, W.; Zhang, X.; et al. Cortical and corticomuscular beta-gamma phase-amplitude coupling during different locomotion states and the effects of levodopa in Parkinson’s disease. Mov. Disord. 2025, preprint. [Google Scholar] [CrossRef]
- Hakkak Moghadam Torbati, A.; Georgiev, C.; Digileva, D.; Yanguma Muñoz, N.; Cabaraux, P.; Davoudi, N.; Piitulainen, H.; Jousmäki, V.; Bourguignon, M. Nonlinear dynamics of MEG and EMG: Stability and similarity analysis. Brain Sci. 2025, 15, 681. [Google Scholar] [CrossRef]
- Smirnov, D. Transfer entropies within dynamical effects framework. Phys. Rev. E 2020, 102, 062139. [Google Scholar] [CrossRef]
- Ekhlasi, A.; Nasrabadi, A.M.; Mohammadi, M. Improving transfer entropy and partial transfer entropy for relative detection of effective connectivity strength between time series. Commun. Nonlinear Sci. Numer. Simul. 2023, 126, 107449. [Google Scholar] [CrossRef]
- Shi, Z.; Li, Y.; Lin, H.; Zhu, F. Coupling analysis of EEG and EMG signals based on transfer entropy after consistent empirical Fourier decomposition. In Proceedings of the 2022 8th International Conference on Control, Automation and Robotics (ICCAR), Xiamen, China, 8–10 April 2022; pp. 436–441. [Google Scholar]
- Arunganesh, K.; Selvaraju, V.; Sivakumaran, N.; Kumaravel, S.; Karthick, P.A. Analysis of corticomuscular coherence between motor cortex region and tibialis anterior muscle using symbolic transfer entropy. In Proceedings of the 2022 IEEE International Symposium on Medical Measurements and Applications (MEMEA 2022), Messina, Italy, 22–24 June 2022; pp. 1–6. [Google Scholar]
- Kerick, S.E.; Hatfield, B.D.; Allender, L.E. Event-related cortical dynamics of soldiers during shooting as a function of varied task demand. Aviation, Space, and Environmental Medicine 2007, 78, B153–B164. [Google Scholar]
- Samuel, I.B.H.; Wang, C.; Hu, Z.; Ding, M. The frequency of alpha oscillations Task-dependent modulation and its functional significance. NeuroImage 2018, 183, 897–906. [Google Scholar] [CrossRef]
- Dirik, H.B.; Ertan, H. Hemispheric synchronization patterns linked with shooting performance in archers. Behav. Brain Res. 2024, 460, 114813. [Google Scholar] [CrossRef] [PubMed]
- Rampp, S.; Spindler, K.; Hartwigsen, G.; Scheller, C.; Simmermacher, S.; Scheer, M.; Strauss, C.; Prell, J. Archery under the (electroencephalography-)hood Theta-lateralization as a marker for motor learning. Neuroscience 2022, 499, 23–39. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, X.; Liu, S.; Mao, Z.; Yu, X. TDITI A time-delay information transfer index algorithm for corticomuscular couplingTDITI. Alex. Eng. J. 2024, 96, 82–92. [Google Scholar] [CrossRef]
- OpenQuants.com. (n.d.). Chapter 5 How to Measure Statistical Causality A Transfer Entropy Approach with Financial Applications. Available online: https://bookdown.org/souzatharsis/open-quant-live-book/how-to-measure-statistical-causality-a-transfer-entropy-approach-with-financial-applications.html (accessed on 11 April 2025).
- Chen, X.; Liu, Y.; Cheng, S.; Shen, T.; Gao, H.; Hou, P.; Xie, P. Composite multiscale coherence and application to functional corticomuscular coupling. Med. Nov. Technol. Devices 2023, 19, 100255. [Google Scholar] [CrossRef]
- Keitel, C.; Keitel, A.; Benwell, C.S.Y.; Daube, C.; Thut, G.; Gross, J. Stimulus-driven brain rhythms within the alpha band The attentional-modulation conundrum. J. Neurosci. 2019, 39, 3119–3129. [Google Scholar] [CrossRef]
- Halgren, M.; Ulbert, I.; Bastuji, H.; Fabó, D.; Erőss, L.; Rey, M.; Devinsky, O.; Doyle, W.K.; Mak-McCully, R.; Halgren, E.; et al. The generation and propagation of the human alpha rhythm. Proc. Natl. Acad. Sci. USA 2019, 116, 23772–23782. [Google Scholar] [CrossRef]
- Dannenberg, H.; Lazaro, H.; Nambiar, P.; Hoyl, A.; Hasselmo, M. Effects of visual inputs on neural dynamics for coding of location and running speed in medial entorhinal cortex. eLife 2020, 9, e62500. [Google Scholar] [CrossRef]
- Darch, H.T.; Cerminara, N.L.; Gilchrist, I.D.; Apps, R. Pre-movement changes in sensorimotor beta oscillations predict motor adaptation drive. Sci. Rep. 2020, 10, 17946. [Google Scholar] [CrossRef]
- Mongold, S.J.; Piitulainen, H.; Legrand, T.; Ghinst, M.V.; Naeije, G.; Jousmäki, V.; Bourguignon, M. Temporally stable beta sensorimotor oscillations and corticomuscular coupling underlie force steadiness. NeuroImage 2022, 261, 119491. [Google Scholar] [CrossRef]
- Ulloa, J. The control of movements via motor gamma oscillations. Front. Hum. Neurosci. 2022, 15, 787157. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Zhan, J.; Xu, L.; Zhou, J.; Fu, W. Motor control performance-related modulation of beta-band EEG-sEMG coherence differs between general and local muscular exercise-induced fatigue. Eur. J. Appl. Physiol. 2025, 125, 1869–1879. [Google Scholar] [CrossRef] [PubMed]
- Vendrame, E.; Belluscio, V.; Truppa, L.; Rum, L.; Lazich, A.; Bergamini, E.; Mannini, A. Performance assessment in archery A systematic review. Sport. Biomech. 2022, 23, 2444–2466. [Google Scholar] [CrossRef] [PubMed]
- Gavenas, J.; Rutishauser, U.; Schurger, A.; Maoz, U. Slow ramping emerges from spontaneous fluctuations in spiking neural networks. Nat. Commun. 2024, 15, 7285. [Google Scholar] [CrossRef]
- El-Baba, R.M.; Schury, M.P. Neuroanatomy, frontal cortex. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Lee, C.; Kim, Y.; Kaang, B.-K. The primary motor cortex The hub of motor learning in rodents. Neuroscience 2022, 485, 163–170. [Google Scholar] [CrossRef]
- Shi, J.; Wang, J.; Lang, J.; Zhang, Z.; Bi, Y.; Liu, R.; Jiang, S.; Hou, L. Effect of different motor skills training on motor control network in the frontal lobe and basal ganglia. Biol. Sport 2020, 37, 405–413. [Google Scholar] [CrossRef]
- Zbib, B.; Henriques, D.Y.P.; Cressman, E.K. Proprioceptive recalibration arises slowly compared to reach adaptation. Exp. Brain Res. 2016, 234, 2201–2213. [Google Scholar] [CrossRef]
- Nolte, G.; Bai, O.; Wheaton, L.; Mari, Z.; Vorbach, S.; Hallett, M. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2004, 115, 2292–2307. [Google Scholar] [CrossRef]
- Nolte, G.; Bai, O.; Wheaton, L.; Mari, Z.; Vorbach, S.; Hallett, M.; Vorbach, S.; Wheaton, L.; Bai, O.; Mari, Z.; et al. IDistinguishing laparoscopic surgery experts from novices using EEG topographic features. Brain Sci. 2023, 13, 1706. [Google Scholar]
Year | Author(s) | Modality | Method | Main Findings/Significance |
---|---|---|---|---|
2020 [10] | Liang et al. | EEG + EMG during ankle dorsiflexion | TFMIC (time–frequency maximal information coefficient) | TFMIC demonstrates accurate detection of corticomuscular coupling across diverse functional relationships under low noise; The strength of coupling is notably higher in the and bands compared to the band. |
2021 [11] | Liu et al. | EEG + EMG during force-tracking task | MSTSE (Multiscale Transfer Spectral Entropy) | Corticomuscular coupling strength in the band is significantly stronger in the cortical-to-muscle direction than in the muscle-to-cortical direction. MSTSE can effectively construct multiscale corticomuscular coupling information. |
2021 [12] | Liang et al. | EEG + EMG during steady grip | TDMIC (time-delayed maximal information coefficient) | Muscle fatigue leads to a significant increase in beta-band information flow within corticomuscular coupling and alters the magnitude of information transfer in both directions (cortex to muscle and muscle to cortex). |
2021 [13] | Guo et al. | EEG + EMG during a motor control task | MWTE (Multiscale Wavelet Transfer Entropy) | The application of MWTE for detecting information transfer between EEG and EMG can simultaneously capture nonlinear cross-frequency and cross-scale interactions. |
2023 [14] | Guerrero-Mendez et al. | EEG + EMG during manipulation tasks involving varying contact surfaces | PBC (Power-Based Connectivity) and MI (Mutual Information) | Compared to the resting state, the anterior deltoid demonstrates the strongest activation and the highest corticomuscular coupling during active object manipulation. |
2024 [15] | Roeder et al. | EEG + EMG during overground walking | Multivariate coherence decomposition | During the gait cycle, the trajectories of corticomuscular coupling networks were contracted in older adults, but exhibited specific enhancement in individuals with impaired foot tactile sensation. |
2024 [16] | Costa et al. | EEG + EMG during different overground walking balance tasks | coherence spectral analysis | The strength of corticomuscular coupling in proximal muscles increases with both age and the degree of balance impairment; cortical involvement in the neural control of walking balance becomes more pronounced with advancing age. |
2025 [17] | Zhao et al. | EEG + EMG during sitting, standing, and free walking | PAC (Phase–amplitude coupling) | Both cortical and corticomuscular – phase–amplitude coupling are modulated by levodopa administration and motor activity. Specifically, low-frequency – corticomuscular phase–amplitude coupling is closely associated with gait dysfunction. |
2025 [18] | Hakkak Moghadam Torbati et al. | Magnetoencephalography (MEG) + EMG during isometric pinch task | Pearson correlation, Lyapunov exponent, fractal dimension, and correlation dimension | Nonlinear features capture the intrinsic and stable dynamics of cortical and muscular beta activity, but do not reflect cross-modal similarity. |
Group | Pre-Test | Post-Test | ||
---|---|---|---|---|
Spearman Correlation Coefficient | p Value | Spearman Correlation Coefficient | p Value | |
Left deltoid | 0.1711 | 0.0986 | −0.2917 | 0.0384 * |
Right deltoid | 0.2294 | 0.0456 * | −0.0960 | 0.0998 |
Left erector spinae | 0.0929 | 0.0310 * | −0.3649 | 0.0428 * |
Right erector spinae | 0.1605 | 0.1601 | −0.1395 | 0.0555 |
Right flexor digitorum superficialis | 0.2729 | 0.0908 | −0.1507 | 0.0235 * |
Right common extensor digitorum | 0.1945 | 0.0280* | −0.2523 | 0.0438 * |
Brain Regions | Frontal | Temporal | Frontal-Central | Central-Parietal | Parietal | Occipital | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Channels | Cohen’s d | Channels | Cohen’s d | Channels | Cohen’s d | Channels | Cohen’s d | Channels | Cohen’s d | Channels | Cohen’s d | |
Fp1 | 0.39 | F7 | 0.65 | FC1 | 0.35 | Cz | 0.35 | P3 | 0.68 | POz | 0.39 | |
Fpz | 0.62 | F8 | 0.39 | FC2 | 0.48 | CP1 | 0.38 | Pz | 0.42 | O1 | 0.37 | |
Fp2 | −0.08 | T7 | 0.47 | FC5 | −0.19 | CP2 | 0.24 | P4 | 0.74 | Oz | 0.62 | |
F3 | 0.17 | T8 | 0.18 | FC6 | 0.59 | CP5 | 0.63 | P7 | 0.70 | O2 | 0.44 | |
Fz | −0.23 | C3 | 0.25 | CP6 | 0.74 | P8 | 0.51 | |||||
F4 | 0.59 | C4 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Leng, Y.; Li, X.; Zhang, W.; Yu, H. Corticomuscular Coupling Analysis in Archery Based on Transfer Entropy. Entropy 2025, 27, 1024. https://doi.org/10.3390/e27101024
Zhang Y, Leng Y, Li X, Zhang W, Yu H. Corticomuscular Coupling Analysis in Archery Based on Transfer Entropy. Entropy. 2025; 27(10):1024. https://doi.org/10.3390/e27101024
Chicago/Turabian StyleZhang, Yunrui, Yue Leng, Xiaozhi Li, Wenjing Zhang, and Hairong Yu. 2025. "Corticomuscular Coupling Analysis in Archery Based on Transfer Entropy" Entropy 27, no. 10: 1024. https://doi.org/10.3390/e27101024
APA StyleZhang, Y., Leng, Y., Li, X., Zhang, W., & Yu, H. (2025). Corticomuscular Coupling Analysis in Archery Based on Transfer Entropy. Entropy, 27(10), 1024. https://doi.org/10.3390/e27101024