Advances and Future Directions in Information Security and Data Privacy
1. Introduction
2. Overview of Published Articles
3. Conclusions and Future Directions
- Integrated approaches that combine complementary techniques, such as merging zero trust principles with privacy-preserving machine learning.
- Scalable, adaptive defenses capable of responding in real time to evolving threats, especially in IoT and federated environments.
- Human-centered security that accounts for usability, policy, and governance alongside technical robustness.
- Bridging theory and practice, ensuring that cutting-edge methods can be deployed at scale without prohibitive costs or complexity.
Conflicts of Interest
List of Contributions
- Zhao, J.; Wu, Y.; Fu, Y.; Liu, S. ESfix: An Embedded Program Repair Tool for Effective Removal of Concurrency Defects. Entropy 2025, 27, 294. https://doi.org/10.3390/e27030294.
- Zhai, Y.; Wang, T.; Zhou, Y.; Zhu, F.; Yang, B. Towards Secure Internet of Things: A Coercion-Resistant Attribute-Based Encryption Scheme with Policy Revocation. Entropy 2025, 27, 32. https://doi.org/10.3390/e27010032.
- Wu, L.; Wen, Y.; Yi, J. A Higher Performance Data Backup Scheme Based on Multi-Factor Authentication. Entropy 2024, 26, 667. https://doi.org/10.3390/e26080667.
- You, X.; Zhao, X.; Wang, Y.; Sun, W. Generation of Face Privacy-Protected Images Based on the Diffusion Model. Entropy 2024, 26, 479. https://doi.org/10.3390/e26060479.
- Li, Y.; Xu, G.; Meng, X.; Du, W.; Ren, X. LF3PFL: A Practical Privacy-Preserving Federated Learning Algorithm Based on Local Federalization Scheme. Entropy 2024, 26, 353. https://doi.org/10.3390/e26050353.
- Khatir, R.A.; Izadkhah, H.; Razmara, J. Designing a Novel Approach Using a Greedy and Information-Theoretic Clustering-Based Algorithm for Anonymizing Microdata Sets. Entropy 2023, 25, 1613. https://doi.org/10.3390/e25121613.
- Ta, H.Q.; Cao, L.; Oh, H. Novel Noise Injection Scheme to Guarantee Zero Secrecy Outage under Imperfect CSI. Entropy 2023, 25, 1594. https://doi.org/10.3390/e25121594.
- Kang, H.; Liu, G.; Wang, Q.; Meng, L.; Liu, J. Theory and Application of Zero Trust Security: A Brief Survey. Entropy 2023, 25, 1595. https://doi.org/10.3390/e25121595.
References
- Hashmi, E.; Yamin, M.M.; Yayilgan, S.Y. Securing tomorrow: A comprehensive survey on the synergy of Artificial Intelligence and information security. AI Ethics 2025, 5, 1911–1929. [Google Scholar] [CrossRef]
- Razi, Q.; Piyush, R.; Chakrabarti, A.; Singh, A.; Hassija, V.; Chalapathi, G.S.S. Enhancing Data Privacy: A Comprehensive Survey of Privacy-Enabling Technologies. IEEE Access 2025, 13, 40354–40385. [Google Scholar] [CrossRef]
- Javed, Y.; Sajid, A. A Systematic Review of Privacy Policy Literature. ACM Comput. Surv. 2025, 57, 1–43. [Google Scholar] [CrossRef]
- Leschanowsky, A.; Rech, S.; Popp, B.; Bäckström, T. Evaluating privacy, security, and trust perceptions in conversational AI: A systematic review. arXiv 2024, arXiv:2406.09037. [Google Scholar] [CrossRef]
- Yan, B.; Li, K.; Xu, M.; Dong, Y.; Zhang, Y.; Ren, Z.; Cheng, X. On protecting the data privacy of large language models (llms): A survey. arXiv 2024, arXiv:2403.05156. [Google Scholar] [CrossRef]
- El Mestari, S.Z.; Lenzini, G.; Demirci, H. Preserving data privacy in machine learning systems. Comput. Secur. 2024, 137, 103605. [Google Scholar] [CrossRef]
- Alwahedi, F.; Aldhaheri, A.; Ferrag, M.A.; Battah, A.; Tihanyi, N. Machine learning techniques for IoT security: Current research and future vision with generative AI and large language models. Internet Things Cyber-Phys. Syst. 2024, 4, 167–185. [Google Scholar] [CrossRef]
- Mishra, V.; Gupta, K.; Saxena, D.; Singh, A.K. A global medical data security and privacy preserving standards identification framework for electronic healthcare consumers. IEEE Trans. Consum. Electron. 2024, 70, 4379–4387. [Google Scholar] [CrossRef]
- Sheikhalishahi, M.; Saracino, A.; Martinelli, F.; La Marra, A. Privacy preserving data sharing and analysis for edge-based architectures. Int. J. Inf. Secur. 2022, 21, 79–101. [Google Scholar] [CrossRef]
- Alishahi, M.; Moghtadaiee, V. Collaborative Private Classifiers Construction. In Collaborative Approaches for Cyber Security in Cyber-Physical Systems; Dimitrakos, T., Lopez, J., Martinelli, F., Eds.; Advanced Sciences and Technologies for Security Applications; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Garcia, J.L.C.; Udechukwu, I.P.; Ibrahim, I.B.; Chukwu, I.J.; Dağ, H.; Dimitrova, V.; Mollakuqe, E. Securing AI systems: A comprehensive overview of cryptographic techniques for enhanced confidentiality and integrity. In Proceedings of the 2024 13th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 11–14 June 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–8. [Google Scholar]
- Zhang, C.; Zhou, L.; Xu, X.; Wu, J.; Liu, Z. Adversarial attacks of vision tasks in the past 10 years: A survey. ACM Comput. Surv. 2024, 58, 1–42. [Google Scholar] [CrossRef]
- Yanamala, A.K.Y.; Suryadevara, S. Navigating data protection challenges in the era of artificial intelligence: A comprehensive review. Rev. De Intel. Artif. En Med. 2024, 15, 113–146. [Google Scholar]
- Olateju, O.; Okon, S.U.; Igwenagu, U.; Salami, A.A.; Oladoyinbo, T.O.; Olaniyi, O.O. Combating the challenges of false positives in AI-driven anomaly detection systems and enhancing data security in the cloud. Asian J. Res. Comput. Sci. 2024, 17, 264–292. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alishahi, M. Advances and Future Directions in Information Security and Data Privacy. Entropy 2025, 27, 1004. https://doi.org/10.3390/e27101004
Alishahi M. Advances and Future Directions in Information Security and Data Privacy. Entropy. 2025; 27(10):1004. https://doi.org/10.3390/e27101004
Chicago/Turabian StyleAlishahi, Mina. 2025. "Advances and Future Directions in Information Security and Data Privacy" Entropy 27, no. 10: 1004. https://doi.org/10.3390/e27101004
APA StyleAlishahi, M. (2025). Advances and Future Directions in Information Security and Data Privacy. Entropy, 27(10), 1004. https://doi.org/10.3390/e27101004