Operational Meaning of Classical Fidelity and Path Length in Kubo–Mori–Bogoliubov Fisher Geometry
Abstract
:1. Introduction
2. State Transport by Equilibrating Reservoirs
3. Remarks and Summary
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhattacharyya, A. On a measure of divergence between two statistical populations defined by their probability distribution. Bull. Calcutta Math. Soc. 1943, 35, 99–110. [Google Scholar]
- Bures, D. An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite w*-algebras. Trans. Am. Math. Soc. 1969, 135, 199–212. [Google Scholar] [CrossRef]
- Uhlmann, A. The “transition probability” in the state space of a *-algebra. Rep. Math. Phys. 1976, 9, 273–279. [Google Scholar] [CrossRef]
- Jozsa, R. Fidelity for mixed quantum states. J. Mod. Opt. 1994, 41, 2315–2323. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2001; Volume 2. [Google Scholar]
- Dodd, J.L.; Nielsen, M.A. Simple operational interpretation of the fidelity of mixed states. Phys. Rev. A 2002, 66, 044301. [Google Scholar] [CrossRef]
- Fisher, R.A. Theory of Statistical Estimation; Cambridge University Press: Cambridge, UK, 1925; Volume 22, pp. 700–725. [Google Scholar]
- Cramér, H. Mathematical Methods of Statistics; Princeton University Press: Princeton, NJ, USA, 1946. [Google Scholar]
- Radhakrishna Rao, C. Information and accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 1945, 37, 81–91. [Google Scholar]
- Braunstein, S.L.; Caves, C.M. Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 1994, 72, 3439–3443. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M. Two quantum analogues of Fisher information from a large deviation viewpoint of quantum estimation. J. Phys. A Math. Gen. 2002, 35, 7689. [Google Scholar] [CrossRef]
- Diósi, L.; Feldmann, T.; Kosloff, R. On the exact identity between thermodynamic and informatic entropies in a unitary model of friction. Int. J. Quantum Inf. 2006, 4, 99–104. [Google Scholar] [CrossRef]
- Csiszár, I.; Hiai, F.; Petz, D. Limit relation for quantum entropy and channel capacity per unit cost. J. Math. Phys. 2007, 48, 092102. [Google Scholar] [CrossRef]
- Petz, D.; Toth, G. The Bogoliubov inner product in quantum statistics: Dedicated to J. Merza on his 60th birthday. Lett. Math. Phys. 1993, 27, 205–216. [Google Scholar] [CrossRef]
- Kantorovich, L. Mathematical methods of organizing and planning production. Manag. Sci. 1960, 6, 366–422. [Google Scholar] [CrossRef]
- Vaserstein, L.N. Markov processes over denumerable products of spaces, describing large systems of automata. Probl. Peredachi Informatsii 1969, 5, 64–72. [Google Scholar]
- Weinhold, F. Metric geometry of equilibrium thermodynamics. J. Chem. Phys. 1975, 63, 2479–2483. [Google Scholar] [CrossRef]
- Ruppeiner, G. Thermodynamics: A Riemannian geometric model. Phys. Rev. A 1979, 20, 1608. [Google Scholar] [CrossRef]
- Diósi, L.; Forgács, G.; Lukács, B.; Frisch, H. Metricization of thermodynamic-state space and the renormalization group. Phys. Rev. A 1984, 29, 3343. [Google Scholar] [CrossRef]
- Janyszek, H.; Mrugała, R. Geometrical structure of the state space in classical statistical and phenomenological thermodynamics. Rep. Math. Phys. 1989, 27, 145–159. [Google Scholar] [CrossRef]
- Salamon, P.; Nulton, J.D. The geometry of separation processes: A horse-carrot theorem for steady flow systems. Europhys. Lett. 1998, 42, 571. [Google Scholar] [CrossRef]
- Salamon, P.; Andresen, B.; Nulton, J.; Roach, T.N.; Rohwer, F. More stages decrease dissipation in irreversible step processes. Entropy 2023, 25, 539. [Google Scholar] [CrossRef]
- Diósi, L. Shannon information increase and rescue in friction. arXiv 2002, arXiv:physics/0206038. [Google Scholar]
- Diosi, L.; Kulacsy, K.; Lukacs, B.; Racz, A. Thermodynamic length, time, speed, and optimum path to minimize entropy production. J. Chem. Phys. 1996, 105, 11220–11225. [Google Scholar] [CrossRef]
- Scandi, M.; Perarnau-Llobet, M. Thermodynamic length in open quantum systems. Quantum 2019, 3, 197. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diósi, L. Operational Meaning of Classical Fidelity and Path Length in Kubo–Mori–Bogoliubov Fisher Geometry. Entropy 2025, 27, 42. https://doi.org/10.3390/e27010042
Diósi L. Operational Meaning of Classical Fidelity and Path Length in Kubo–Mori–Bogoliubov Fisher Geometry. Entropy. 2025; 27(1):42. https://doi.org/10.3390/e27010042
Chicago/Turabian StyleDiósi, Lajos. 2025. "Operational Meaning of Classical Fidelity and Path Length in Kubo–Mori–Bogoliubov Fisher Geometry" Entropy 27, no. 1: 42. https://doi.org/10.3390/e27010042
APA StyleDiósi, L. (2025). Operational Meaning of Classical Fidelity and Path Length in Kubo–Mori–Bogoliubov Fisher Geometry. Entropy, 27(1), 42. https://doi.org/10.3390/e27010042