Operational Meaning of Classical Fidelity and Path Length in Kubo–Mori–Bogoliubov Fisher Geometry
Abstract
1. Introduction
2. State Transport by Equilibrating Reservoirs
3. Remarks and Summary
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhattacharyya, A. On a measure of divergence between two statistical populations defined by their probability distribution. Bull. Calcutta Math. Soc. 1943, 35, 99–110. [Google Scholar]
- Bures, D. An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite w*-algebras. Trans. Am. Math. Soc. 1969, 135, 199–212. [Google Scholar] [CrossRef]
- Uhlmann, A. The “transition probability” in the state space of a *-algebra. Rep. Math. Phys. 1976, 9, 273–279. [Google Scholar] [CrossRef]
- Jozsa, R. Fidelity for mixed quantum states. J. Mod. Opt. 1994, 41, 2315–2323. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2001; Volume 2. [Google Scholar]
- Dodd, J.L.; Nielsen, M.A. Simple operational interpretation of the fidelity of mixed states. Phys. Rev. A 2002, 66, 044301. [Google Scholar] [CrossRef]
- Fisher, R.A. Theory of Statistical Estimation; Cambridge University Press: Cambridge, UK, 1925; Volume 22, pp. 700–725. [Google Scholar]
- Cramér, H. Mathematical Methods of Statistics; Princeton University Press: Princeton, NJ, USA, 1946. [Google Scholar]
- Radhakrishna Rao, C. Information and accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 1945, 37, 81–91. [Google Scholar]
- Braunstein, S.L.; Caves, C.M. Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 1994, 72, 3439–3443. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M. Two quantum analogues of Fisher information from a large deviation viewpoint of quantum estimation. J. Phys. A Math. Gen. 2002, 35, 7689. [Google Scholar] [CrossRef]
- Diósi, L.; Feldmann, T.; Kosloff, R. On the exact identity between thermodynamic and informatic entropies in a unitary model of friction. Int. J. Quantum Inf. 2006, 4, 99–104. [Google Scholar] [CrossRef]
- Csiszár, I.; Hiai, F.; Petz, D. Limit relation for quantum entropy and channel capacity per unit cost. J. Math. Phys. 2007, 48, 092102. [Google Scholar] [CrossRef]
- Petz, D.; Toth, G. The Bogoliubov inner product in quantum statistics: Dedicated to J. Merza on his 60th birthday. Lett. Math. Phys. 1993, 27, 205–216. [Google Scholar] [CrossRef]
- Kantorovich, L. Mathematical methods of organizing and planning production. Manag. Sci. 1960, 6, 366–422. [Google Scholar] [CrossRef]
- Vaserstein, L.N. Markov processes over denumerable products of spaces, describing large systems of automata. Probl. Peredachi Informatsii 1969, 5, 64–72. [Google Scholar]
- Weinhold, F. Metric geometry of equilibrium thermodynamics. J. Chem. Phys. 1975, 63, 2479–2483. [Google Scholar] [CrossRef]
- Ruppeiner, G. Thermodynamics: A Riemannian geometric model. Phys. Rev. A 1979, 20, 1608. [Google Scholar] [CrossRef]
- Diósi, L.; Forgács, G.; Lukács, B.; Frisch, H. Metricization of thermodynamic-state space and the renormalization group. Phys. Rev. A 1984, 29, 3343. [Google Scholar] [CrossRef]
- Janyszek, H.; Mrugała, R. Geometrical structure of the state space in classical statistical and phenomenological thermodynamics. Rep. Math. Phys. 1989, 27, 145–159. [Google Scholar] [CrossRef]
- Salamon, P.; Nulton, J.D. The geometry of separation processes: A horse-carrot theorem for steady flow systems. Europhys. Lett. 1998, 42, 571. [Google Scholar] [CrossRef]
- Salamon, P.; Andresen, B.; Nulton, J.; Roach, T.N.; Rohwer, F. More stages decrease dissipation in irreversible step processes. Entropy 2023, 25, 539. [Google Scholar] [CrossRef]
- Diósi, L. Shannon information increase and rescue in friction. arXiv 2002, arXiv:physics/0206038. [Google Scholar]
- Diosi, L.; Kulacsy, K.; Lukacs, B.; Racz, A. Thermodynamic length, time, speed, and optimum path to minimize entropy production. J. Chem. Phys. 1996, 105, 11220–11225. [Google Scholar] [CrossRef]
- Scandi, M.; Perarnau-Llobet, M. Thermodynamic length in open quantum systems. Quantum 2019, 3, 197. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diósi, L. Operational Meaning of Classical Fidelity and Path Length in Kubo–Mori–Bogoliubov Fisher Geometry. Entropy 2025, 27, 42. https://doi.org/10.3390/e27010042
Diósi L. Operational Meaning of Classical Fidelity and Path Length in Kubo–Mori–Bogoliubov Fisher Geometry. Entropy. 2025; 27(1):42. https://doi.org/10.3390/e27010042
Chicago/Turabian StyleDiósi, Lajos. 2025. "Operational Meaning of Classical Fidelity and Path Length in Kubo–Mori–Bogoliubov Fisher Geometry" Entropy 27, no. 1: 42. https://doi.org/10.3390/e27010042
APA StyleDiósi, L. (2025). Operational Meaning of Classical Fidelity and Path Length in Kubo–Mori–Bogoliubov Fisher Geometry. Entropy, 27(1), 42. https://doi.org/10.3390/e27010042