Optimal Quaternary Hermitian LCD Codes
Abstract
1. Introduction
2. Preliminary
Notation
3. Hermitian LCD Linear Codes over
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Massey, J.L. Reversible codes. Inf. Control 1964, 7, 369–380. [Google Scholar] [CrossRef]
- Massey, J.L. Linear codes with complementary duals. Discret. Math. 1992, 106–107, 337–342. [Google Scholar] [CrossRef]
- Carlet, C.; Guilley, S. Complementary dual codes for counter-measures to side-channel attacks. Adv. Math. Commun. 2016, 10, 131–150. [Google Scholar] [CrossRef]
- Lu, L.; Li, R.; Guo, L.; Fu, Q. Maximal entanglement entanglement-assisted quantum codes constructed from linear codes. Quantum Inf. Process. 2015, 14, 165–182. [Google Scholar] [CrossRef]
- Lv, L.; Li, R.; Fu, Q.; Li, X. Maximal entanglement entanglement-assisted quantum codes constructed from quaternary BCH codes. In Proceedings of the IEEE Advanced Information Technology, Electronic and Automation Control Conference, Chongqing, China, 19–20 December 2015. [Google Scholar]
- Ding, C.; Li, C.; Li, S. LCD cyclic codes over finite fields. IEEE Trans. Inf. Theory 2018, 63, 4344–4356. [Google Scholar]
- Güneri, C.; Özkaya, B.; Solé, P. Quasi-cyclic complementary dual codes. Finite Fields Their Appl. 2016, 42, 67–80. [Google Scholar] [CrossRef]
- Yang, X.; Massey, J.L. The necessary and sufficient condition for a cyclic code to have a complementary dual. Discret. Math. 1994, 126, 391–393. [Google Scholar] [CrossRef]
- Shi, M.; Özbudak, F.; Xu, L.; Solé, P. LCD codes from tridiagonal Toeplitz matrices. Finite Fields Their Appl. 2021, 75, 101892. [Google Scholar] [CrossRef]
- Shi, M.; Huang, D.; Sok, L.; Solé, P. Double circulant LCD codes over Z4. Finite Fields Their Appl. 2019, 58, 133–144. [Google Scholar] [CrossRef]
- Sok, L.; Shi, M.; Solé, P. Construction of optimal LCD codes over large finite fields. Finite Fields Their Appl. 2018, 50, 138–153. [Google Scholar] [CrossRef]
- Shi, M.; Li, S.; Kim, J.; Solé, P. LCD and ACD codes over a noncommutative non-unital ring with four elements. Cryptogr. Commun. 2022, 14, 627–640. [Google Scholar] [CrossRef]
- Hou, X.; Oggier, F. On LCD codes and lattices. In Proceedings of the IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, 10–15 July 2016; pp. 1501–1505. [Google Scholar] [CrossRef]
- Lina, E.R.L.; Nocon, E.G. On the construction of some LCD codes over finite fields. Manila J. Sci. 2016, 9, 67–82. [Google Scholar]
- Zhu, S.; Pang, B.; Sun, Z. The reversible negacyclic codes over finite fields. arXiv 2016, arXiv:1610.08206v1. [Google Scholar]
- Galvez, L.; Kim, J.; Lee, N.; Roe, Y.; Won, B. Some bounds on binary LCD codes. Cryptogr. Commun. 2018, 10, 719–728. [Google Scholar] [CrossRef]
- Araya, M.; Harada, M. On the classification of linear complementary dual codes. Discret. Math. 2019, 342, 270–278. [Google Scholar] [CrossRef]
- Araya, M.; Harada, M. On the minimum weights of binary linear complementary dual codes. Cryptogr. Commun. 2019, 12, 285–300. [Google Scholar] [CrossRef]
- Fu, Q.; Li, R.; Fu, F.; Rao, Y. On the Construction of Binary Optimal LCD Codes with Short Length. Int. J. Found. Comput. Sci. 2019, 30, 1237–1245. [Google Scholar] [CrossRef]
- Lai, C.; Brun, T.; Wilde, M. Duality in Entanglement-assisted quantum error correction. IEEE Trans. Inf. Theory 2013, 59, 4020–4024. [Google Scholar] [CrossRef]
- Dougherty, S.T.; Kim, J.-L.; Ozkaya, B.; Sok, L.; Solé, P. The combinatorics of LCD codes: Linear Programming bound and orthogonal matrices. Int. J. Inf. Coding Theory 2017, 4, 116–128. [Google Scholar] [CrossRef]
- Carlet, C.; Mesnager, S.; Tang, C.; Qi, Y.; Pellikaan, R. Linear Codes Over Fq Are Equivalent to LCD Codes for q > 3. IEEE Trans. Inf. Theory 2018, 64, 3010–3017. [Google Scholar] [CrossRef]
- Araya, M.; Harada, M.; Saito, K. Quaternary Hermitian linear complementary dual codes. IEEE Trans. Inf. Theory 2020, 66, 2751–2759. [Google Scholar] [CrossRef]
- Grassl, M. Bounds on the Minimum Distance of Linear Codes. 2024. Available online: http://www.codetables.de (accessed on 28 February 2024).
- Lai, C.; Ashikhmin, A. Linear Programming Bounds for Entanglement-Assisted Quantum Error-Correcting Codes by Split Weight Enumerators. IEEE Trans. Inf. Theory 2018, 64, 622–639. [Google Scholar] [CrossRef]
- Kschischang, F.; Pasupathy, S. Some ternary and quantum codes and associated sphere pachings. IEEE Trans. Inform. Theory 1992, 38, 227–246. [Google Scholar] [CrossRef]
- Bouyukliev, L.; Grassl, M.; Varbanov, Z. New bounds for n4(k, d) and classification of some optimal codes over GF(4). Discret. Math. 2004, 281, 43–66. [Google Scholar] [CrossRef]
- Li, R. Research on Additive Quantum Error Correcting Codes. Ph.D. Thesis, Northwest Poly-Technical University, Xi’an, China, 2004. [Google Scholar]
- Lu, L.; Li, R.; Guo, L. Entanglement-assisted quantum codes from quaternary codes of dimension five. Int. J. Quantum Inf. 2017, 14, 1750017. [Google Scholar] [CrossRef]
- Harada, M. Some optimal entanglement-assisted quantum codes constructed from quaternary Hermitian linear complementary dual codes. Int. Quantum Inf. 2019, 17, 1950053. [Google Scholar] [CrossRef]
13 | 14 | 15 | 16 | 17 | 18 | 19 | |
21 | 6 | 5 | 5 | 4 | 3 | 2 | 2 |
22 | 6 | 6 | 5 | 4 | 4 | 3 | 2 |
23 | 6 | 6 | 5 | 4 | 4 | 3 | |
24 | 6 | 6 | 5 | 4 | 4 | ||
25 | 6 | 6 | 5 | 4 |
8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
21 | 9 | 8 | 7 | 6 | ||||
22 | 10 | 8 | 8 | 7 | 6 | |||
23 | 11 | 9 | 8 | 8 | 7 | 6 | ||
24 | 11 | 10 | 9 | 8 | 8 | 7 | 6 | |
25 | 11 | 10 | 9 | 8 | 7 | 7 | 6 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
3 | 3 * | 2 * | ||||||||||
4 | 3 * | 2 | 1 | |||||||||
5 | 5 * | 3 | 2 | 2 * | ||||||||
6 | 5 * | 4 * | 3 | 2 * | 1 | |||||||
7 | 7 * | 5 * | 4 * | 3 * | 2 * | 2 * | ||||||
8 | 7 * | 6 * | 5 * | 4 * | 3 * | 2 * | 1 | |||||
9 | 9 * | 6 | 6 * | 5 * | 4 * | 3 * | 2 * | 2 * | ||||
10 | 9 * | 7 | 6 * | 6 * | 5 * | 4 * | 3 * | 2 * | 1 | 1 | ||
11 | 11 * | 8 * | 7 * | 6 * | 6 * | 5 * | 4 * | 3 * | 2 * | 2 * | 1 | |
12 | 11 * | 9 * | 8 * | 7 * | 6 * | 5 | 4 * | 4 * | 3 * | 2 * | 2 * | 1 |
13 | 13 * | 10 * | 9 * | 8 * | 7 * | 6 * | 5 * | 4 * | 4 * | 3 * | 2 * | 2 * |
14 | 13 * | 10 | 9 | 8 | 7–8 | 7 * | 6 * | 5 * | 4 * | 4 * | 3 * | 2 * |
15 | 15 * | 11 | 10 | 9 | 8 * | 7 | 7 * | 6 * | 5 * | 4 * | 4 * | 3 * |
16 | 15 * | 12 * | 11 | 10 | 9 * | 8 * | 7–8 | 6–7 | 6 * | 5 * | 4 * | 4 * |
17 | 17 * | 13 * | 12 * | 11 | 10 * | 9 * | 7–8 | 7–8 | 6–7 | 6 * | 5 * | 4 * |
18 | 17 * | 14 * | 13 * | 11–12 | 10 * | 9–10 | 9 * | 8 * | 7–8 | 6 * | 5–6 | 5 * |
19 | 19 * | 14 | 13 | 12 *–13 | 11 * | 10 * | 9 * | 8 *–9 | 8 * | 7 * | 6 * | 5–6 |
20 | 19 * | 15 | 14 | 13 * | 12 * | 11 * | 10 * | 9 * | 8 *–9 | 7–8 | 6–7 | 6 * |
21 | 21 * | 16 * | 15 | 14 * | 12 | 12 * | 10–11 | 9–10 | 8–9 | 7–9 | 6–8 | 6–7 |
22 | 22 * | 17 * | 15 | 14 | 13 | 12 *–13 | 11–12 | 10 | 8–10 | 8–9 | 7–9 | 6–8 |
23 | 23 * | 18 * | 16 * | 15 | 14 | 13 * | 12 *–13 | 11 | 9–11 | 8–10 | 8–9 | 7–9 |
24 | 24 * | 18 | 17 * | 16 * | 15 | 14 * | 12–13 | 11–13 | 10–12 | 9–11 | 8–10 | 8–9 |
25 | 25 * | 19 | 18 * | 17 * | 15 | 14–15 | 13–14 | 12 *–13 | 11–13 | 10–12 | 9–11 | 8–10 |
13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
14 | 1 | |||||||||||
15 | 2 * | 2 * | ||||||||||
16 | 3 * | 2 * | 1 | |||||||||
17 | 3–4 | 3 * | 2 * | 2 * | ||||||||
18 | 4 * | 3 * | 3 * | 2 * | 1 | |||||||
19 | 5 * | 4 * | 3 * | 3 * | 2 * | 2 * | ||||||
20 | 5–6 | 5 * | 4 * | 3 * | 2 | 2 * | 1 | 1 | ||||
21 | 6 * | 5 *–6 | 5 * | 4 * | 3 * | 2 | 2 * | 2 * | 1 | |||
22 | 6 *–7 | 6 * | 5 *–6 | 4 *–5 | 4 * | 3 * | 2 * | 2 * | 2 | 1 | ||
23 | 6–8 | 6 *–7 | 6 * | 5 *–6 | 4 *–5 | 4 * | 2 * | 2 * | 2 * | 2 * | 1 * | |
24 | 7–9 | 6–8 | 6 *–7 | 6 * | 5 *–6 | 4 *–5 | 3 * | 3 * | 2 * | 2 * | 2 * | 1 * |
25 | 7–9 | 7–9 | 6–8 | 6 *–7 | 6 * | 5 *–6 | 4 * | 4 * | 3 * | 2 * | 2 * | 2 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, L.; Li, R.; Ren, Y. Optimal Quaternary Hermitian LCD Codes. Entropy 2024, 26, 373. https://doi.org/10.3390/e26050373
Lu L, Li R, Ren Y. Optimal Quaternary Hermitian LCD Codes. Entropy. 2024; 26(5):373. https://doi.org/10.3390/e26050373
Chicago/Turabian StyleLu, Liangdong, Ruihu Li, and Yuezhen Ren. 2024. "Optimal Quaternary Hermitian LCD Codes" Entropy 26, no. 5: 373. https://doi.org/10.3390/e26050373
APA StyleLu, L., Li, R., & Ren, Y. (2024). Optimal Quaternary Hermitian LCD Codes. Entropy, 26(5), 373. https://doi.org/10.3390/e26050373