Optimal Quaternary Hermitian LCD Codes
Abstract
:1. Introduction
2. Preliminary
Notation
3. Hermitian LCD Linear Codes over
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Massey, J.L. Reversible codes. Inf. Control 1964, 7, 369–380. [Google Scholar] [CrossRef]
- Massey, J.L. Linear codes with complementary duals. Discret. Math. 1992, 106–107, 337–342. [Google Scholar] [CrossRef]
- Carlet, C.; Guilley, S. Complementary dual codes for counter-measures to side-channel attacks. Adv. Math. Commun. 2016, 10, 131–150. [Google Scholar] [CrossRef]
- Lu, L.; Li, R.; Guo, L.; Fu, Q. Maximal entanglement entanglement-assisted quantum codes constructed from linear codes. Quantum Inf. Process. 2015, 14, 165–182. [Google Scholar] [CrossRef]
- Lv, L.; Li, R.; Fu, Q.; Li, X. Maximal entanglement entanglement-assisted quantum codes constructed from quaternary BCH codes. In Proceedings of the IEEE Advanced Information Technology, Electronic and Automation Control Conference, Chongqing, China, 19–20 December 2015. [Google Scholar]
- Ding, C.; Li, C.; Li, S. LCD cyclic codes over finite fields. IEEE Trans. Inf. Theory 2018, 63, 4344–4356. [Google Scholar]
- Güneri, C.; Özkaya, B.; Solé, P. Quasi-cyclic complementary dual codes. Finite Fields Their Appl. 2016, 42, 67–80. [Google Scholar] [CrossRef]
- Yang, X.; Massey, J.L. The necessary and sufficient condition for a cyclic code to have a complementary dual. Discret. Math. 1994, 126, 391–393. [Google Scholar] [CrossRef]
- Shi, M.; Özbudak, F.; Xu, L.; Solé, P. LCD codes from tridiagonal Toeplitz matrices. Finite Fields Their Appl. 2021, 75, 101892. [Google Scholar] [CrossRef]
- Shi, M.; Huang, D.; Sok, L.; Solé, P. Double circulant LCD codes over Z4. Finite Fields Their Appl. 2019, 58, 133–144. [Google Scholar] [CrossRef]
- Sok, L.; Shi, M.; Solé, P. Construction of optimal LCD codes over large finite fields. Finite Fields Their Appl. 2018, 50, 138–153. [Google Scholar] [CrossRef]
- Shi, M.; Li, S.; Kim, J.; Solé, P. LCD and ACD codes over a noncommutative non-unital ring with four elements. Cryptogr. Commun. 2022, 14, 627–640. [Google Scholar] [CrossRef]
- Hou, X.; Oggier, F. On LCD codes and lattices. In Proceedings of the IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, 10–15 July 2016; pp. 1501–1505. [Google Scholar] [CrossRef]
- Lina, E.R.L.; Nocon, E.G. On the construction of some LCD codes over finite fields. Manila J. Sci. 2016, 9, 67–82. [Google Scholar]
- Zhu, S.; Pang, B.; Sun, Z. The reversible negacyclic codes over finite fields. arXiv 2016, arXiv:1610.08206v1. [Google Scholar]
- Galvez, L.; Kim, J.; Lee, N.; Roe, Y.; Won, B. Some bounds on binary LCD codes. Cryptogr. Commun. 2018, 10, 719–728. [Google Scholar] [CrossRef]
- Araya, M.; Harada, M. On the classification of linear complementary dual codes. Discret. Math. 2019, 342, 270–278. [Google Scholar] [CrossRef]
- Araya, M.; Harada, M. On the minimum weights of binary linear complementary dual codes. Cryptogr. Commun. 2019, 12, 285–300. [Google Scholar] [CrossRef]
- Fu, Q.; Li, R.; Fu, F.; Rao, Y. On the Construction of Binary Optimal LCD Codes with Short Length. Int. J. Found. Comput. Sci. 2019, 30, 1237–1245. [Google Scholar] [CrossRef]
- Lai, C.; Brun, T.; Wilde, M. Duality in Entanglement-assisted quantum error correction. IEEE Trans. Inf. Theory 2013, 59, 4020–4024. [Google Scholar] [CrossRef]
- Dougherty, S.T.; Kim, J.-L.; Ozkaya, B.; Sok, L.; Solé, P. The combinatorics of LCD codes: Linear Programming bound and orthogonal matrices. Int. J. Inf. Coding Theory 2017, 4, 116–128. [Google Scholar] [CrossRef]
- Carlet, C.; Mesnager, S.; Tang, C.; Qi, Y.; Pellikaan, R. Linear Codes Over Fq Are Equivalent to LCD Codes for q > 3. IEEE Trans. Inf. Theory 2018, 64, 3010–3017. [Google Scholar] [CrossRef]
- Araya, M.; Harada, M.; Saito, K. Quaternary Hermitian linear complementary dual codes. IEEE Trans. Inf. Theory 2020, 66, 2751–2759. [Google Scholar] [CrossRef]
- Grassl, M. Bounds on the Minimum Distance of Linear Codes. 2024. Available online: http://www.codetables.de (accessed on 28 February 2024).
- Lai, C.; Ashikhmin, A. Linear Programming Bounds for Entanglement-Assisted Quantum Error-Correcting Codes by Split Weight Enumerators. IEEE Trans. Inf. Theory 2018, 64, 622–639. [Google Scholar] [CrossRef]
- Kschischang, F.; Pasupathy, S. Some ternary and quantum codes and associated sphere pachings. IEEE Trans. Inform. Theory 1992, 38, 227–246. [Google Scholar] [CrossRef]
- Bouyukliev, L.; Grassl, M.; Varbanov, Z. New bounds for n4(k, d) and classification of some optimal codes over GF(4). Discret. Math. 2004, 281, 43–66. [Google Scholar] [CrossRef]
- Li, R. Research on Additive Quantum Error Correcting Codes. Ph.D. Thesis, Northwest Poly-Technical University, Xi’an, China, 2004. [Google Scholar]
- Lu, L.; Li, R.; Guo, L. Entanglement-assisted quantum codes from quaternary codes of dimension five. Int. J. Quantum Inf. 2017, 14, 1750017. [Google Scholar] [CrossRef]
- Harada, M. Some optimal entanglement-assisted quantum codes constructed from quaternary Hermitian linear complementary dual codes. Int. Quantum Inf. 2019, 17, 1950053. [Google Scholar] [CrossRef]
13 | 14 | 15 | 16 | 17 | 18 | 19 | |
21 | 6 | 5 | 5 | 4 | 3 | 2 | 2 |
22 | 6 | 6 | 5 | 4 | 4 | 3 | 2 |
23 | 6 | 6 | 5 | 4 | 4 | 3 | |
24 | 6 | 6 | 5 | 4 | 4 | ||
25 | 6 | 6 | 5 | 4 |
8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
21 | 9 | 8 | 7 | 6 | ||||
22 | 10 | 8 | 8 | 7 | 6 | |||
23 | 11 | 9 | 8 | 8 | 7 | 6 | ||
24 | 11 | 10 | 9 | 8 | 8 | 7 | 6 | |
25 | 11 | 10 | 9 | 8 | 7 | 7 | 6 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
3 | 3 * | 2 * | ||||||||||
4 | 3 * | 2 | 1 | |||||||||
5 | 5 * | 3 | 2 | 2 * | ||||||||
6 | 5 * | 4 * | 3 | 2 * | 1 | |||||||
7 | 7 * | 5 * | 4 * | 3 * | 2 * | 2 * | ||||||
8 | 7 * | 6 * | 5 * | 4 * | 3 * | 2 * | 1 | |||||
9 | 9 * | 6 | 6 * | 5 * | 4 * | 3 * | 2 * | 2 * | ||||
10 | 9 * | 7 | 6 * | 6 * | 5 * | 4 * | 3 * | 2 * | 1 | 1 | ||
11 | 11 * | 8 * | 7 * | 6 * | 6 * | 5 * | 4 * | 3 * | 2 * | 2 * | 1 | |
12 | 11 * | 9 * | 8 * | 7 * | 6 * | 5 | 4 * | 4 * | 3 * | 2 * | 2 * | 1 |
13 | 13 * | 10 * | 9 * | 8 * | 7 * | 6 * | 5 * | 4 * | 4 * | 3 * | 2 * | 2 * |
14 | 13 * | 10 | 9 | 8 | 7–8 | 7 * | 6 * | 5 * | 4 * | 4 * | 3 * | 2 * |
15 | 15 * | 11 | 10 | 9 | 8 * | 7 | 7 * | 6 * | 5 * | 4 * | 4 * | 3 * |
16 | 15 * | 12 * | 11 | 10 | 9 * | 8 * | 7–8 | 6–7 | 6 * | 5 * | 4 * | 4 * |
17 | 17 * | 13 * | 12 * | 11 | 10 * | 9 * | 7–8 | 7–8 | 6–7 | 6 * | 5 * | 4 * |
18 | 17 * | 14 * | 13 * | 11–12 | 10 * | 9–10 | 9 * | 8 * | 7–8 | 6 * | 5–6 | 5 * |
19 | 19 * | 14 | 13 | 12 *–13 | 11 * | 10 * | 9 * | 8 *–9 | 8 * | 7 * | 6 * | 5–6 |
20 | 19 * | 15 | 14 | 13 * | 12 * | 11 * | 10 * | 9 * | 8 *–9 | 7–8 | 6–7 | 6 * |
21 | 21 * | 16 * | 15 | 14 * | 12 | 12 * | 10–11 | 9–10 | 8–9 | 7–9 | 6–8 | 6–7 |
22 | 22 * | 17 * | 15 | 14 | 13 | 12 *–13 | 11–12 | 10 | 8–10 | 8–9 | 7–9 | 6–8 |
23 | 23 * | 18 * | 16 * | 15 | 14 | 13 * | 12 *–13 | 11 | 9–11 | 8–10 | 8–9 | 7–9 |
24 | 24 * | 18 | 17 * | 16 * | 15 | 14 * | 12–13 | 11–13 | 10–12 | 9–11 | 8–10 | 8–9 |
25 | 25 * | 19 | 18 * | 17 * | 15 | 14–15 | 13–14 | 12 *–13 | 11–13 | 10–12 | 9–11 | 8–10 |
13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
14 | 1 | |||||||||||
15 | 2 * | 2 * | ||||||||||
16 | 3 * | 2 * | 1 | |||||||||
17 | 3–4 | 3 * | 2 * | 2 * | ||||||||
18 | 4 * | 3 * | 3 * | 2 * | 1 | |||||||
19 | 5 * | 4 * | 3 * | 3 * | 2 * | 2 * | ||||||
20 | 5–6 | 5 * | 4 * | 3 * | 2 | 2 * | 1 | 1 | ||||
21 | 6 * | 5 *–6 | 5 * | 4 * | 3 * | 2 | 2 * | 2 * | 1 | |||
22 | 6 *–7 | 6 * | 5 *–6 | 4 *–5 | 4 * | 3 * | 2 * | 2 * | 2 | 1 | ||
23 | 6–8 | 6 *–7 | 6 * | 5 *–6 | 4 *–5 | 4 * | 2 * | 2 * | 2 * | 2 * | 1 * | |
24 | 7–9 | 6–8 | 6 *–7 | 6 * | 5 *–6 | 4 *–5 | 3 * | 3 * | 2 * | 2 * | 2 * | 1 * |
25 | 7–9 | 7–9 | 6–8 | 6 *–7 | 6 * | 5 *–6 | 4 * | 4 * | 3 * | 2 * | 2 * | 2 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, L.; Li, R.; Ren, Y. Optimal Quaternary Hermitian LCD Codes. Entropy 2024, 26, 373. https://doi.org/10.3390/e26050373
Lu L, Li R, Ren Y. Optimal Quaternary Hermitian LCD Codes. Entropy. 2024; 26(5):373. https://doi.org/10.3390/e26050373
Chicago/Turabian StyleLu, Liangdong, Ruihu Li, and Yuezhen Ren. 2024. "Optimal Quaternary Hermitian LCD Codes" Entropy 26, no. 5: 373. https://doi.org/10.3390/e26050373
APA StyleLu, L., Li, R., & Ren, Y. (2024). Optimal Quaternary Hermitian LCD Codes. Entropy, 26(5), 373. https://doi.org/10.3390/e26050373