Chaos in Opinion-Driven Disease Dynamics
Abstract
1. Introduction
2. Materials and Methods—Model Description
2.1. Epidemiological System
2.2. Opinion Formation System
2.3. Opinion–Epidemic Model
2.4. Discretization of the Opinion Space
2.5. Some Analytic Results for a Simplified Setting
2.6. Simulation Setup
2.6.1. Software
2.6.2. Hardware
2.6.3. Simulations
2.6.4. Analysis Methods
- autocorrelation;
- standard Shannon entropy [46];
- Poincaré maps;
- Fourier Transform.
3. Results and Discussion
Discussion
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BC | Bounded Confidence |
FFT | Fast Fourier Transform |
MLE | Maximum Lyapunov Exponent |
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of Open Access Journals |
TLA | Three-Letter Acronym |
LD | Linear Dichroism |
Appendix A
Appendix B
References
- Galam, S. Sociophysics: A Physicist’s Modeling of Psycho-Political Phenomena; Understanding Complex Systems; Springer: Boston, MA, USA, 2012. [Google Scholar] [CrossRef]
- Galam, S. Sociophysics: A Review of Galam models. Int. J. Mod. Phys. C 2008, 19, 409–440. [Google Scholar] [CrossRef]
- Castellano, C.; Muñoz, M.A.; Pastor-Satorras, R. Nonlinear q-voter model. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2009, 80, 041129. [Google Scholar] [CrossRef]
- Sznajd-Weron, K.; Sznajd, J. Opinion evolution in closed community. Int. J. Mod. Phys. C 2000, 11, 1157–1165. [Google Scholar] [CrossRef]
- Granovetter, M. Threshold Models of Collective Behavior. Am. J. Sociol. 1978, 83, 1420–1443. [Google Scholar] [CrossRef]
- Hegselmann, R.; Krause, U. Opinion dynamics and bounded confidence: Models, analysis and simulation. J. Artif. Soc. Soc. Simul. 2002, 5, 1–33. [Google Scholar]
- Dietz, K.; Heesterbeek, J.A.P. Bernoulli was ahead of modern epidemiology. Nature 2000, 408, 513–514. [Google Scholar] [CrossRef]
- Ross, R.; Hudson, H.P. An application of the theory of probabilities to the study of a priori pathometry—Part III. Proc. R. Soc. Lond. Ser. A Contain. Pap. A Math. Phys. Charact. 1917, 93, 225–240. [Google Scholar] [CrossRef]
- Epstein, J.M.; Parker, J.; Cummings, D.; Hammond, R.A. Coupled Contagion Dynamics of Fear and Disease: Mathematical and Computational Explorations. PLoS ONE 2008, 3, e3955. [Google Scholar] [CrossRef]
- Wu, Y.; Li, M.; Xiao, J.; Orgun, M.A.; Xue, L. The Impact of Discrimination on the Spread of Infectious Diseases in Complex Networks. New Gener. Comput. 2014, 32, 193–211. [Google Scholar] [CrossRef]
- Wu, J.; Ni, S.; Shen, S. Dynamics of public opinion under the influence of epidemic spreading. Int. J. Mod. Phys. C 2016, 27, 1650079. [Google Scholar] [CrossRef]
- Pires, M.A.; Crokidakis, N. Dynamics of epidemic spreading with vaccination: Impact of social pressure and engagement. Phys. A Stat. Mech. Appl. 2017, 467, 167–179. [Google Scholar] [CrossRef]
- Ni, S.; Weng, W.; Zhang, H. Modeling the effects of social impact on epidemic spreading in complex networks. Phys. A Stat. Mech. Appl. 2011, 390, 4528–4534. [Google Scholar] [CrossRef]
- Durham, D.P.; Casman, E.A.; Albert, S.M. Deriving Behavior Model Parameters from Survey Data: Self-Protective Behavior Adoption During the 2009–2010 Influenza A(H1N1) Pandemic. Risk Anal. 2012, 32, 2020–2031. [Google Scholar] [CrossRef] [PubMed]
- d’Onofrio, A.; Manfredi, P. Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious diseases. J. Theor. Biol. 2009, 256, 473–478. [Google Scholar] [CrossRef]
- Greenhalgh, D.; Rana, S.; Samanta, S.; Sardar, T.; Bhattacharya, S.; Chattopadhyay, J. Awareness programs control infectious disease—Multiple delay induced mathematical model. Appl. Math. Comput. 2015, 251, 539–563. [Google Scholar] [CrossRef]
- Sooknanan, J.; Comissiong, D.M.G. Trending on Social Media: Integrating Social Media into Infectious Disease Dynamics. Bull. Math. Biol. 2020, 82, 86. [Google Scholar] [CrossRef] [PubMed]
- Sooknanan, J.; Seemungal, T.A.R. FOMO (fate of online media only) in infectious disease modeling: A review of compartmental models. Int. J. Dyn. Control 2023, 11, 892–899. [Google Scholar] [CrossRef]
- Fang, F.; Ma, J.; Li, Y. The coevolution of the spread of a disease and competing opinions in multiplex networks. Chaos Solitons Fractals 2023, 170, 113376. [Google Scholar] [CrossRef]
- Ali, R.N.; Sarkar, S. Impact of opinion dynamics on the public health damage inflicted by COVID-19 in the presence of societal heterogeneities. Front. Digit. Health 2023, 5, 1146178. [Google Scholar] [CrossRef]
- Zanella, M. Kinetic Models for Epidemic Dynamics in the Presence of Opinion Polarization. Bull. Math. Biol. 2023, 85, 36. [Google Scholar] [CrossRef]
- Agusto, F.B.; Numfor, E.; Srinivasan, K.; Iboi, E.A.; Fulk, A.; Saint Onge, J.M.; Peterson, A.T. Impact of public sentiments on the transmission of COVID-19 across a geographical gradient. PeerJ 2023, 11, e14736. [Google Scholar] [CrossRef]
- Kastalskiy, I.A.; Pankratova, E.V.; Mirkes, E.M.; Kazantsev, V.B.; Gorban, A.N. Social stress drives the multi-wave dynamics of COVID-19 outbreaks. Sci. Rep. 2021, 11, 22497. [Google Scholar] [CrossRef] [PubMed]
- Bernardes, A.T.; Ribeiro, L.C. Information, opinion and pandemic. Phys. A Stat. Mech. Appl. 2021, 565, 125586. [Google Scholar] [CrossRef] [PubMed]
- Sooknanan, J.; Mays, N. Harnessing Social Media in the Modelling of Pandemics—Challenges and Opportunities. Bull. Math. Biol. 2021, 83, 57. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, R.; Chmiel, A. Role of Time Scales in the Coupled Epidemic-Opinion Dynamics on Multiplex Networks. Entropy 2022, 24, 105. [Google Scholar] [CrossRef]
- Du, E.; Chen, E.; Liu, J.; Zheng, C. How do social media and individual behaviors affect epidemic transmission and control? Sci. Total Environ. 2021, 761, 144114. [Google Scholar] [CrossRef]
- Peng, K.; Lu, Z.; Lin, V.; Lindstrom, M.R.; Parkinson, C.; Wang, C.; Bertozzi, A.L.; Porter, M.A. A multilayer network model of the coevolution of the spread of a disease and competing opinions. Math. Model. Methods Appl. Sci. 2021, 31, 2455–2494. [Google Scholar] [CrossRef]
- Carballosa, A.; Mussa-Juane, M.; Muñuzuri, A.P. Incorporating social opinion in the evolution of an epidemic spread. Sci. Rep. 2021, 11, 1772. [Google Scholar] [CrossRef]
- Epstein, J.M.; Hatna, E.; Crodelle, J. Triple contagion: A two-fears epidemic model. J. R. Soc. Interface 2021, 18, 20210186. [Google Scholar] [CrossRef]
- Wagner, J.; Bauer, S.; Contreras, S.; Fleddermann, L.; Parlitz, U.; Priesemann, V. Societal feedback induces complex and chaotic dynamics in endemic infectious diseases. arXiv 2023, arXiv:2305.15427. [Google Scholar] [CrossRef]
- Lim, C.; Zhang, W. Social opinion dynamics is not chaotic. Int. J. Mod. Phys. B 2016, 30, 1541006. [Google Scholar] [CrossRef]
- Borghesi, C.; Galam, S. Chaotic, staggered, and polarized dynamics in opinion forming: The contrarian effect. Phys. Rev. E 2006, 73, 066118. [Google Scholar] [CrossRef]
- Kermack, W.O.; McKendrick, A.G. Contributions to the mathematical theory of epidemics—I. Bull. Math. Biol. 1991, 53, 33–55. [Google Scholar] [CrossRef]
- Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V.B. Julia: A Fresh Approach to Numerical Computing. SIAM Rev. 2017, 59, 65–98. [Google Scholar] [CrossRef]
- Datseris, G. DynamicalSystems.jl: A Julia software library for chaos and nonlinear dynamics. J. Open Source Softw. 2018, 3, 598. [Google Scholar] [CrossRef]
- Datseris, G.; Parlitz, U. Nonlinear Dynamics: A Concise Introduction Interlaced with Code; Undergraduate Lecture Notes in Physics; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Rackauckas, C.; Nie, Q. DifferentialEquations.jl—A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia. J. Open Res. Softw. 2017, 5, 15. [Google Scholar] [CrossRef]
- Frigo, M.; Johnson, S. The Design and Implementation of FFTW3. Proc. IEEE 2005, 93, 216–231. [Google Scholar] [CrossRef]
- Verner, J.H. Numerically optimal Runge—Kutta pairs with interpolants. Numer. Algorithms 2010, 53, 383–396. [Google Scholar] [CrossRef]
- Lyapunov, A.M. The general problem of the stability of motion. Int. J. Control 1992, 55, 531–534. [Google Scholar] [CrossRef]
- Benettin, G.; Galgani, L.; Strelcyn, J.M. Kolmogorov entropy and numerical experiments. Phys. Rev. A 1976, 14, 2338–2345. [Google Scholar] [CrossRef]
- Haaga, K.A.; Datseris, G.; Kottlarz, I.; White, A.; Martinuzzi, F.; HeineRugland; Johnson, S.G. JuliaDynamics/ComplexityMeasures.jl: V2.8.0. Zenodo. 2023. Available online: https://zenodo.org/records/8186595 (accessed on 5 February 2024).
- Llanos, F.; Alexander, J.M.; Stilp, C.E.; Kluender, K.R. Power spectral entropy as an information-theoretic correlate of manner of articulation in American English. J. Acoust. Soc. Am. 2017, 141, EL127–EL133. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhang, H.; Xu, W.; Zhang, H.; Yang, L.; Zheng, S.; Shi, Y. Spectral Entropy Can Predict Changes of Working Memory Performance Reduced by Short-Time Training in the Delayed-Match-to-Sample Task. Front. Hum. Neurosci. 2017, 11, 437. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Alfaro, M.; Fuertes, G.; Vargas, M.; Sepúlveda, J.; Veloso-Poblete, M. Forecast of Chaotic Series in a Horizon Superior to the Inverse of the Maximum Lyapunov Exponent. Complexity 2018, 2018, 1452683. [Google Scholar] [CrossRef]
Parameter | a | |||
Value | 0.6 | 0.1 | 0.11 | 0.225 |
Parameter | n | ||
Initial values | 4 | 0.0 | 0.15 |
Final value | 10 1 | 0.4 | 1.05 |
Step size | 1 | 0.01 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Götz, T.; Krüger, T.; Niedzielewski, K.; Pestow, R.; Schäfer, M.; Schneider, J. Chaos in Opinion-Driven Disease Dynamics. Entropy 2024, 26, 298. https://doi.org/10.3390/e26040298
Götz T, Krüger T, Niedzielewski K, Pestow R, Schäfer M, Schneider J. Chaos in Opinion-Driven Disease Dynamics. Entropy. 2024; 26(4):298. https://doi.org/10.3390/e26040298
Chicago/Turabian StyleGötz, Thomas, Tyll Krüger, Karol Niedzielewski, Radomir Pestow, Moritz Schäfer, and Jan Schneider. 2024. "Chaos in Opinion-Driven Disease Dynamics" Entropy 26, no. 4: 298. https://doi.org/10.3390/e26040298
APA StyleGötz, T., Krüger, T., Niedzielewski, K., Pestow, R., Schäfer, M., & Schneider, J. (2024). Chaos in Opinion-Driven Disease Dynamics. Entropy, 26(4), 298. https://doi.org/10.3390/e26040298