pRR30, pRR3.25% and Asymmetrical Entropy Descriptors in Atrial Fibrillation Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Software
2.3. Asymmetrical Entropy
2.4. pRR30 and pRR3.25%
2.5. Statistical Analysis
3. Results
3.1. Entropy Distribution
3.2. Diagnostic Properties of Single HRV Parameters
3.3. Diagnostic Values of Models Built Using pRR30, pRR3.25% and Asymmetric Entropy Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.; Dilaveris, P. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the Europea. Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef]
- Ble, M.; Benito, B.; Cuadrado-Godia, E.; Pérez-Fernández, S.; Gómez, M.; Mas-Stachurska, A.; Tizón-Marcos, H.; Molina, L.; Martí-Almor, J.; Cladellas, M. Left Atrium Assessment by Speckle Tracking Echocardiography in Cryptogenic Stroke: Seeking Silent Atrial Fibrillation. J. Clin. Med. 2021, 10, 3501. [Google Scholar] [CrossRef] [PubMed]
- Roten, L.; Goulouti, E.; Lam, A.; Elchinova, E.; Nozica, N.; Spirito, A.; Wittmer, S.; Branca, M.; Servatius, H.; Noti, F.; et al. Age and Sex Specific Prevalence of Clinical and Screen-Detected Atrial Fibrillation in Hospitalized Patients. J. Clin. Med. 2021, 10, 4871. [Google Scholar] [CrossRef] [PubMed]
- Turagam, M.K.; Flaker, G.C.; Velagapudi, P.; Vadali, S.; A Alpert, M. Atrial Fibrillation In Athletes: Pathophysiology, Clinical Presentation, Evaluation and Management. J. Atr. Fibrillation 2015, 8, 1309. [Google Scholar] [CrossRef]
- Lin, A.L.; Nah, G.; Tang, J.J.; Vittinghoff, E.; A Dewland, T.; Marcus, G.M. Cannabis, cocaine, methamphetamine, and opiates increase the risk of incident atrial fibrillation. Eur. Heart J. 2022, 43, 4933–4942. [Google Scholar] [CrossRef]
- Rizwan, A.; Zoha, A.; Ben Mabrouk, I.; Sabbour, H.M.; Al-Sumaiti, A.S.; Alomainy, A.; Imran, M.A.; Abbasi, Q.H. A Review on the State of the Art in Atrial Fibrillation Detection Enabled by Machine Learning. IEEE Rev. Biomed. Eng. 2020, 14, 219–239. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Lip, G.Y.H.; Shantsila, A. Heart rate variability in atrial fibrillation: The balance between sympathetic and parasympathetic nervous system. Eur. J. Clin. Investig. 2019, 49, e13174. [Google Scholar] [CrossRef] [PubMed]
- Buś, S.; Jędrzejewski, K.; Guzik, P. Statistical and Diagnostic Properties of pRRx Parameters in Atrial Fibrillation Detection. J. Clin. Med. 2022, 11, 5702. [Google Scholar] [CrossRef] [PubMed]
- Piskorski, J.; Guzik, P. The structure of heart rate asymmetry: Deceleration and acceleration runs. Physiol. Meas. 2011, 32, 1011–1023. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, E215–E220. [Google Scholar] [CrossRef]
- Petrutiu, S.; Sahakian, A.V.; Swiryn, S. Abrupt changes in fibrillatory wave characteristics at the termination of paroxysmal atrial fibrillation in humans. Europace 2007, 9, 466–470. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Levene, H.; Wolfowitz, J. The covariance matrix of runs up and down. Ann. Math. Stat. 1944, 15, 58–69. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika. 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Fawcett, T. An Introduction to ROC analysis. Pattern Recogn. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Youden, W. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Glas, A.S.; Lijmer, J.G.; Prins, M.H.; Bonsel, G.J.; Bossuyt, P.M.M. The diagnostic odds ratio: A single indicator of test performance. J. Clin. Epidemiol. 2003, 56, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Hastie, T.; Tibshirani, R.; Friedman, J. Model Assessment and Selection. In The Elements of Statistical Learning, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 220–221. [Google Scholar]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Oster, J.; Reinertsen, E.; Li, Q.; Zhao, L.; Nemati, S.; Clifford, G.D. A comparison of entropy approaches for AF discrimination. Physiol. Meas. 2018, 39, 074002. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, C.; Wei, S.; Shen, Q.; Zhou, F.; Li, J. A New Entropy-Based Atrial Fibrillation Detection Method for Scanning Wearable ECG Recordings. Entropy 2018, 20, 904. [Google Scholar] [CrossRef]
- Żurek, S.; Grabowski, W.; Wojtiuk, K.; Szewczak, D.; Guzik, P.; Piskorski, J. Relative Consistency of Sample Entropy Is Not Preserved in MIX Processes. Entropy 2020, 22, 694. [Google Scholar] [CrossRef] [PubMed]
- Renshaw, A.A.; Gould, E.W. Reducing false-negative and false-positive diagnoses in anatomic pathology consultation material. Arch. Pathol. Lab. Med. 2013, 137, 1770–1773. [Google Scholar] [CrossRef] [PubMed]
- Klinkman, M.S.; Coyne, J.C.; Gallo, S.; Schwenk, T.L. False positives, false negatives, and the validity of the diagnosis of major depression in primary care. Arch. Fam. Med. 1998, 7, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Buś, S.; Jędrzejewski, K.; Guzik, P. Impact of Electrocardiogram Length on Diagnostic Properties of Heart Rate Variability Indices in Atrial Fibrillation Detection. In Proceedings of the 2022 12th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO), Vysoké Tatry, Slovakia, 9–12 October 2022; pp. 1–2. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
Parameter | AUC | Cut-Off for AF | Accuracy | Sensitivity | Specificity | PPV | NPV | DOR |
---|---|---|---|---|---|---|---|---|
pRR3.25% | 0.9727 | <72.3684% | 95.75 | 99.60 | 92.25 | 92.12 | 99.60 | 2931.82 |
pRR30 | 0.9596 | <66.8874% | 91.00 | 95.62 | 86.80 | 86.82 | 95.62 | 143.70 |
HNR | 0.9315 | <0.1884 | 84.86 | 95.45 | 75.26 | 77.83 | 94.79 | 63.82 |
HAR | 0.6951 | <0.7546 | 67.85 | 86.83 | 50.59 | 61.52 | 80.86 | 6.76 |
HDR | 0.6686 | <0.7726 | 67.68 | 91.49 | 46.00 | 60.66 | 85.61 | 9.16 |
H | 0.6186 | <2.0647 | 60.03 | 85.68 | 36.69 | 55.18 | 73.80 | 3.47 |
Feature | AUC | Accuracy | DOR | FP + FN [%] | FP [%] | FN [%] |
---|---|---|---|---|---|---|
pRR3.25% | 0.972 | 0.9513 | 643.0 | 4.87 | 3.98 | 0.88 |
pRR30 | 0.959 | 0.9277 | 233.5 | 7.23 | 5.57 | 1.65 |
H | 0.613 | 0.6118 | 2.6 | 38.82 | 24.3 | 14.52 |
HAR | 0.7 | 0.6536 | 3.6 | 34.64 | 16.11 | 18.53 |
HDR | 0.67 | 0.6155 | 2.6 | 38.45 | 16.91 | 21.54 |
HNR | 0.93 | 0.8842 | 84.5 | 11.58 | 9.03 | 2.55 |
pRR3.25 & pRR30% | 0.978 | 0.955 | 687.1 | 4.5 | 3.57 | 0.93 |
pRR3.25% & H | 0.986 | 0.9566 | 705.6 | 4.34 | 3.38 | 0.96 |
pRR3.25% & HAR | 0.982 | 0.9549 | 693.0 | 4.51 | 3.59 | 0.92 |
pRR3.25% & HDR | 0.977 | 0.9517 | 623.3 | 4.83 | 3.9 | 0.93 |
pRR3.25% & HNR | 0.974 | 0.9516 | 632.3 | 4.84 | 3.93 | 0.91 |
pRR30 & H | 0.973 | 0.9327 | 252.3 | 6.73 | 5.01 | 1.72 |
pRR30 & HAR | 0.969 | 0.9312 | 240.5 | 6.88 | 5.13 | 1.76 |
pRR30 & HDR | 0.963 | 0.9279 | 235.8 | 7.21 | 5.57 | 1.64 |
pRR30 & HNR | 0.96 | 0.9284 | 232.9 | 7.16 | 5.47 | 1.69 |
pRR30 & pRR3.25%, & H | 0.988 | 0.9577 | 695.5 | 4.23 | 3.2 | 01.03 |
pRR30 & pRR3.25%, & HAR | 0.985 | 0.9581 | 732.4 | 4.19 | 3.22 | 0.97 |
pRR30 & pRR3.25%, & HDR | 0.982 | 0.9541 | 633.7 | 4.59 | 3.58 | 1 |
pRR30 & pRR3.25%, & HNR | 0.979 | 0.9537 | 631.3 | 4.63 | 3.65 | 0.99 |
HNR & HAR, & HDR | 0.935 | 0.8838 | 82.8 | 11.62 | 9.01 | 2.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biczuk, B.; Buś, S.; Żurek, S.; Piskorski, J.; Guzik, P. pRR30, pRR3.25% and Asymmetrical Entropy Descriptors in Atrial Fibrillation Detection. Entropy 2024, 26, 296. https://doi.org/10.3390/e26040296
Biczuk B, Buś S, Żurek S, Piskorski J, Guzik P. pRR30, pRR3.25% and Asymmetrical Entropy Descriptors in Atrial Fibrillation Detection. Entropy. 2024; 26(4):296. https://doi.org/10.3390/e26040296
Chicago/Turabian StyleBiczuk, Bartosz, Szymon Buś, Sebastian Żurek, Jarosław Piskorski, and Przemysław Guzik. 2024. "pRR30, pRR3.25% and Asymmetrical Entropy Descriptors in Atrial Fibrillation Detection" Entropy 26, no. 4: 296. https://doi.org/10.3390/e26040296
APA StyleBiczuk, B., Buś, S., Żurek, S., Piskorski, J., & Guzik, P. (2024). pRR30, pRR3.25% and Asymmetrical Entropy Descriptors in Atrial Fibrillation Detection. Entropy, 26(4), 296. https://doi.org/10.3390/e26040296