Derivation of the Langevin Equation from the Microcanonical Ensemble
Abstract
:1. Introduction
2. Model
2.1. Dynamics
2.2. Statistical Mechanics
3. Effective System Dynamics
3.1. Markov Property
3.2. Average System Behavior
3.2.1. Evaluation of
3.2.2. Evaluation of
Co-Moving Frame
Laboratory Frame
The Contribution in
3.2.3. Evaluation of
3.2.4. Evaluation of
3.2.5. Evaluation of
3.3. Summary
3.4. Rules of Calculus
3.5. Connection to the Fokker-Planck Equation
4. Discussion and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Odd Averages Vanish
Appendix B. The Replacement δ’ (…)→δ (…)
Appendix C. The Different Representations for γij
References
- Snook, I. The Langevin and Generalized Langevin Approach to the Dynamics of Atomic, Polymeric and Colloidal Systems, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Mazo, R.M. Brownian Motion: Fluctuations, Dynamics and Applications, 1st ed.; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Gardiner, C.W. Handbook of Stochastic Methods, 2nd ed.; Springer: Berlin, Germany, 1985. [Google Scholar]
- van Kampen, N.G. Stochastic Processes in Physics and Chemistry, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Risken, H. The Fokker-Planck Equation, 2nd ed.; Springer: Berlin, Germany, 1989. [Google Scholar]
- Sekimoto, K. Stochastic Energetics, 1st ed.; Springer: Berlin, Germany, 2010. [Google Scholar]
- Goldstein, H.; Poole, C.P.; Safko, J.L. Classical Mechanics, Pearson new int. ed.; Pearson Education Limited: Edinburg, UK, 2013. [Google Scholar]
- Reif, F. Fundamentals of Statistical and Thermal Physics, Int. ed.; McGraw-Hill: Singapore, 1985. [Google Scholar]
- Zuckerman, D.M. Statistical Physics of Biomolecules, 1st ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Zwanzig, R. Ensemble Method. J. Chem. Phys. 1960, 33, 1338–1341. [Google Scholar] [CrossRef]
- Mori, H. Transport, Collective Motion, and Brownian Motion. Prog. Theor. Phys. 1965, 33, 423–455. [Google Scholar] [CrossRef]
- Grabert, H.; Hänggi, P.; Talkner, P. Microdynamics and Nonlinear Stochastic Processes of Gross Variables. J. Stat. Phys. 1980, 22, 537–552. [Google Scholar] [CrossRef]
- Grabert, H. Projection Operator Techniques, 1st ed.; Springer: Berlin, Germany, 1982. [Google Scholar]
- te Vrugt, M.; Wittkowski, R. Projection operators in statistical mechanics: A pedagogical approach. Eur. J. Phys. 2020, 41, 045101. [Google Scholar] [CrossRef]
- Reimann, P. Brownian motors: Noisy transport far from equilibrium. Phys. Rep. 2002, 361, 57–265. [Google Scholar] [CrossRef]
- Zwanzig, R. Nonlinear Generalized Langevin Equations. J. Stat. Phys. 1973, 9, 215–220. [Google Scholar] [CrossRef]
- Miyazaki, K.; Seki, K. Brownian motion of spins revisited. J. Chem. Phys. 1998, 108, 7052–7059. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eichhorn, R. Derivation of the Langevin Equation from the Microcanonical Ensemble. Entropy 2024, 26, 277. https://doi.org/10.3390/e26040277
Eichhorn R. Derivation of the Langevin Equation from the Microcanonical Ensemble. Entropy. 2024; 26(4):277. https://doi.org/10.3390/e26040277
Chicago/Turabian StyleEichhorn, Ralf. 2024. "Derivation of the Langevin Equation from the Microcanonical Ensemble" Entropy 26, no. 4: 277. https://doi.org/10.3390/e26040277
APA StyleEichhorn, R. (2024). Derivation of the Langevin Equation from the Microcanonical Ensemble. Entropy, 26(4), 277. https://doi.org/10.3390/e26040277