Axiomatic Approach to Measures of Total Correlations
Abstract
:1. Introduction
2. Axioms
3. Total Correlation Measures
3.1. Quantum Mutual Information
3.2. Rényi Divergence
3.3. Tsallis Relative Entropy
3.4. Norm of Correlation Matrix
3.5. Pearson Correlation Coefficient
3.6. Kullback–Leibler Divergence
4. Analysis of the Total Correlation Measures for Two-Qubit Systems
5. Final Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fanchini, F.F.; Pinto, D.O.S.; Adesso, G. Lectures on General Quantum Correlations and Their Applications; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Hu, M.; Hu, X.; Wang, J.; Peng, Y.; Zhang, Y.; Fan, H. Quantum coherence and geometric quantum discord. Phys. Rep. 2018, 762–764, 1–100. [Google Scholar] [CrossRef]
- Wilde, M.M. Quantum Information Theory; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Jaeger, G. Quantum Information; Springer: New York, NY, USA, 2007. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Xi, Z.; Wang, X.; Li, Y. Measurement-induced nonlocality based on the relative entropy. Phys. Rev. A 2012, 85, 042325. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Milne, A.; Vu, T.; Jevtic, S. Quantum steering with positive operator valued measures. J. Phys. A Math. 2018, 51, 355302. [Google Scholar] [CrossRef]
- Khalid, U.; ur Rehman, J.; Shin, H. Measurement-Based Quantum Correlations for Quantum Information Processing. Sci. Rep. 2020, 10, 2443. [Google Scholar] [CrossRef] [PubMed]
- Goold, J.; Huber, M.; Riera, A.; Rio, L.; Skrzypczyk, P. The role of quantum information in thermodynamics—A topical review. J. Phys. A Math. 2016, 49, 143001. [Google Scholar] [CrossRef]
- Perarnau-Llobet, M.; Hovhannisyan, K.V.; Huber, M.; Skrzypczyk, P.; Brunner, N.; Acín, A. Extractable Work from Correlations. Phys. Rev. X 2015, 5, 041011. [Google Scholar] [CrossRef]
- Micadei, K.; Peterson, J.P.S.; Souza, A.M.; Sarthour, R.S.; Oliveira, I.S.; Landi, G.T.; Batalhão, T.B.; Serra, R.M.; Lutz, E. Reversing the direction of heat flow using quantum correlations. Nat. Commun. 2019, 10, 2456. [Google Scholar] [CrossRef]
- Andolina, G.M.; Keck, M.; Mari, A.; Campisi, M.; Giovannetti, V.; Polini, M. Extractable Work, the Role of Correlations, and Asymptotic Freedom in Quantum Batteries. Phys. Rev. Lett. 2019, 122, 047702. [Google Scholar] [CrossRef] [PubMed]
- Alipour, S.; Benatti, F.; Bakhshinezhad, F.; Afsary, M.; Marcantoni, S.; Rezakhani, A.T. Correlations in quantum thermodynamics: Heat, work, and entropy production. Sci. Rep. 2016, 6, 35568. [Google Scholar] [CrossRef]
- Barrios, G.A.; Albarrán-Arriagada, F.; Cárdenas-López, F.A.; Romero, G.; Retamal, J.C. Role of quantum correlations in light-matter quantum heat engines. Phys. Rev. A 2017, 96, 052119. [Google Scholar] [CrossRef]
- Vedral, V. The role of relative entropy in quantum information theory. Rev. Mod. Phys. 2002, 74, 197–234. [Google Scholar] [CrossRef]
- Modi, K.; Cable, H.; Williamson, M.; Vedral, V. Quantum Correlations in Mixed-State Metrology. Phys. Rev. X 2011, 1, 021022. [Google Scholar] [CrossRef]
- Branciard, C.; Cavalcanti, E.G.; Walborn, S.P.; Scarani, V.; Wiseman, H.M. One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering. Phys. Rev. A 2012, 85, 010301. [Google Scholar] [CrossRef]
- He, Q.; Rosales-Zárate, L.; Adesso, G.; Reid, M.D. Secure Continuous Variable Teleportation and Einstein-Podolsky-Rosen Steering. Phys. Rev. Lett. 2015, 115, 180502. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Kogias, I.; Adesso, G.; He, Q. Multipartite Gaussian steering: Monogamy constraints and quantum cryptography applications. Phys. Rev. A 2017, 95, 010101. [Google Scholar] [CrossRef]
- Goettems, E.I.; Maciel, T.O.; Soares-Pinto, D.O.; Duzzioni, E.I. Promoting quantum correlations in deterministic quantum computation with a one-qubit model via postselection. Phys. Rev. A 2021, 103, 042416. [Google Scholar] [CrossRef]
- Li, N.; Luo, S. Total versus quantum correlations in quantum states. Phys. Rev. A 2007, 76, 032327. [Google Scholar] [CrossRef]
- Adami, C.; Cerf, N.J. von Neumann capacity of noisy quantum channels. Phys. Rev. A 1997, 56, 3470–3483. [Google Scholar] [CrossRef]
- Stratonovich, R.L. Information capacity of a quantum communications channel. I. Sov. Radiophys. 1965, 8, 82–95. [Google Scholar] [CrossRef]
- Meystre, P.; Scully, M.O. Quantum Optics, Experimental Gravity, and Measurement Theory; Springer: New York, NY, USA, 1983. [Google Scholar]
- Barnett, S.M.; Phoenix, S.J.D. Entropy as a measure of quantum optical correlation. Phys. Rev. A 1989, 40, 2404–2409. [Google Scholar] [CrossRef]
- Barnett, S.M.; Phoenix, S.J.D. Information theory, squeezing, and quantum correlations. Phys. Rev. A 1991, 44, 535–545. [Google Scholar] [CrossRef]
- Kumar, A. Family of Quantum Mutual Information and Interaction Information in Multiparty Quantum Systems. arXiv 2024, arXiv:2407.16365. [Google Scholar] [CrossRef]
- Alipour, S.; Tuohino, S.; Rezakhani, A.T.; Ala-Nissila, T. Unreliability of mutual information as a measure for variations in total correlations. Phys. Rev. A 2020, 101, 042311. [Google Scholar] [CrossRef]
- Tserkis, S.; Assad, S.M.; Lam, P.K.; Narang, P. Quantifying total correlations in quantum systems through the Pearson correlation coefficient. arXiv 2023, arXiv:2306.14458. [Google Scholar] [CrossRef]
- Virmani, S.; Plenio, M. Ordering states with entanglement measures. Phys. Lett. A 2000, 268, 31–34. [Google Scholar] [CrossRef]
- Henderson, L.; Vedral, V. Classical, quantum and total correlations. J. Phys. A Math. 2001, 34, 6899. [Google Scholar] [CrossRef]
- Zhou, D.L.; Zeng, B.; Xu, Z.; You, L. Multiparty correlation measure based on the cumulant. Phys. Rev. A 2006, 74, 052110. [Google Scholar] [CrossRef]
- Vedral, V. Classical Correlations and Entanglement in Quantum Measurements. Phys. Rev. Lett. 2003, 90, 050401. [Google Scholar] [CrossRef]
- Peres, A. Separability Criterion for Density Matrices. Phys. Rev. Lett. 1996, 77, 1413–1415. [Google Scholar] [CrossRef]
- Horodecki, R.; Horodecki, M.; Horodecki, P. Teleportation, Bell’s inequalities and inseparability. Phys. Lett. A 1996, 222, 21–25. [Google Scholar] [CrossRef]
- Schumacher, M.; Alber, G. Detection of typical bipartite entanglement by local generalized measurements. Phys. Rev. A 2023, 108, 042424. [Google Scholar] [CrossRef]
- Umegaki, H. Conditional expectation in an operator algebra. IV. Entropy and information. Kodai Math. Sem. Rep. 1962, 14, 59–85. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley: New York, NY, USA, 2006. [Google Scholar]
- Orthey, A.C.; Angelo, R.M. Quantum realism: Axiomatization and quantification. Phys. Rev. A 2022, 105, 052218. [Google Scholar] [CrossRef]
- Petz, D. Quasi-entropies for finite quantum systems. Rep. Math. Phys. 1986, 23, 57–65. [Google Scholar] [CrossRef]
- Mosonyi, M.; Hiai, F. On the Quantum Rényi Relative Entropies and Related Capacity Formulas. IEEE Trans. Inf. Theory 2011, 57, 2474–2487. [Google Scholar] [CrossRef]
- Abe, S. Monotonic decrease of the quantum nonadditive divergence by projective measurements. Phys. Lett. A 2003, 312, 336–338. [Google Scholar] [CrossRef]
- Rastegin, A.E. Quantum-coherence quantifiers based on the Tsallis relative α entropies. Phys. Rev. A 2016, 93, 032136. [Google Scholar] [CrossRef]
- Hiai, F.; Mosonyi, M.; Petz, D.; Bény, C. Quantum f-divergences and error correction. Rev. Math. Phys. 2011, 23, 691–747. [Google Scholar] [CrossRef]
- Bhatia, R. Matrix Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Pearson, K. Note on regression and inheritance in the case of two parents. Proc. R. Soc. Lond. 1895, 58, 240–242. [Google Scholar] [CrossRef]
- Rényi, A.; Vekerdi, L. Probability Theory; North-Holland Publishing Company: Amsterdam, The Netherlands, 1970. [Google Scholar]
- Beigi, S. A new quantum data processing inequality. J. Math. Phys. 2013, 54, 082202. [Google Scholar] [CrossRef]
- Beigi, S.; Rahimi-Keshari, S. Quantum maximal correlation for Gaussian states. Phys. Rev. A 2023, 108, 062419. [Google Scholar] [CrossRef]
- Gour, G. Uniqueness and Optimality of Dynamical Extensions of Divergences. PRX Quantum 2021, 2, 010313. [Google Scholar] [CrossRef]
- Maziero, J.; Celeri, L.C.; Serra, R.M. Symmetry aspects of quantum discord. arXiv 2011, arXiv:1004.2082. [Google Scholar] [CrossRef]
I | ||||||
---|---|---|---|---|---|---|
Non-negativity | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Local unitary invariance | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Monotonicity | ✔ | ✔ | ✔ | |||
Continuity | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Additivity | ✔ | ✔ | ✗ | ✗ | ✔ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moraes, G.L.; Angelo, R.M.; Costa, A.C.S. Axiomatic Approach to Measures of Total Correlations. Entropy 2024, 26, 1098. https://doi.org/10.3390/e26121098
Moraes GL, Angelo RM, Costa ACS. Axiomatic Approach to Measures of Total Correlations. Entropy. 2024; 26(12):1098. https://doi.org/10.3390/e26121098
Chicago/Turabian StyleMoraes, Gabriel L., Renato M. Angelo, and Ana C. S. Costa. 2024. "Axiomatic Approach to Measures of Total Correlations" Entropy 26, no. 12: 1098. https://doi.org/10.3390/e26121098
APA StyleMoraes, G. L., Angelo, R. M., & Costa, A. C. S. (2024). Axiomatic Approach to Measures of Total Correlations. Entropy, 26(12), 1098. https://doi.org/10.3390/e26121098