Deep Learning for Epileptic Seizure Detection Using a Causal-Spatio-Temporal Model Based on Transfer Entropy
Abstract
:1. Introduction
2. Materials and Methods
2.1. CSTGAT Model
2.1.1. Causal Relationship Module
2.1.2. Graph Attention Network Module
2.1.3. Bi-LSTM Module
2.2. Evaluation Indicators
2.3. Experimental Environment and Parameters
2.4. Datasets
3. Results and Discussion
3.1. Subject-Specific Experiments
3.2. Ablation Experiments
3.3. Comparison with Other Methods
3.4. Influence of the Parameters
4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Roghani, A.; Wang, C.P.; Henion, A.; Amuan, M.; Altalib, H.; LaFrance, W.C., Jr.; Baca, C.; Van Cott, A.; Towne, A.; Kean, J.; et al. Mortality among veterans with epilepsy: Temporal significance of traumatic brain injury exposure. Epilepsia 2024, 65, 2255–2269. [Google Scholar] [CrossRef] [PubMed]
- Heyne, H.O.; Pajuste, F.D.; Wanner, J.; Onwuchekwa, J.I.D.; Mägi, R.; Palotie, A.; Kälviainen, R.; Daly, M.J.; FinnGen; Estonian Biobank Research Team. Polygenic risk scores as a marker for epilepsy risk across lifetime and after unspecified seizure events. Nat. Commun. 2024, 15, 6277. [Google Scholar] [CrossRef] [PubMed]
- Yasir, M.; Liu, S.; Mingming, X.; Wan, J.; Pirasteh, S.; Dang, K.B. ShipGeoNet: SAR Image-Based Geometric Feature Extraction of Ships Using Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5202613. [Google Scholar] [CrossRef]
- Cai, J.Z.; Boust, C.; Mansouri, A. ATSFCNN: A novel attention-based triple-stream fused CNN model for hyperspectral image classification. Mach. Learn.-Sci. Technol. 2024, 5, 015024. [Google Scholar] [CrossRef]
- Majeed, M.A.; Shafri, H.Z.M.; Zulkafli, Z.; Wayayok, A. A Deep Learning Approach for Dengue Fever Prediction in Malaysia Using LSTM with Spatial Attention. Int. J. Environ. Res. Public Health 2023, 20, 4130. [Google Scholar] [CrossRef]
- Li, G.N.; Zhao, X.W.; Fan, C.; Fang, X.; Li, F.; Wu, Y.B. Assessment of long short-term memory and its modifications for enhanced short-term building energy predictions. J. Build. Eng. 2021, 43, 103182. [Google Scholar] [CrossRef]
- Geng, D.V.; Alkhachroum, A.; Bicchi, M.A.M.; Jagid, J.R.; Cajigas, I.; Chen, Z.S. Deep learning for robust detection of interictal epileptiform discharges. J. Neural Eng. 2021, 18, 056015. [Google Scholar] [CrossRef]
- Si, X.P.; Yang, Z.B.; Zhang, X.J.; Sun, Y.L.; Jin, W.P.; Wang, L.; Yin, S.Y.; Ming, D. Patient-independent seizure detection based on long-term iEEG and a novel lightweight CNN. J. Neural Eng. 2023, 20, 016037. [Google Scholar] [CrossRef]
- Guo, L.H.; Yu, T.; Zhao, S.J.; Li, X.L.; Liao, X.F.; Li, Y. CLEP: Contrastive Learning for Epileptic Seizure Prediction Using a Spatio-Temporal-Spectral Network. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 3915–3926. [Google Scholar] [CrossRef]
- Nejedly, P.; Kremen, V.; Sladky, V.; Nasseri, M.; Guragain, H.; Klimes, P.; Cimbalnik, J.; Varatharajah, Y.; Brinkmann, B.H.; Worrell, G.A. Deep-learning for seizure forecasting in canines with epilepsy. J. Neural Eng. 2019, 16, 036031. [Google Scholar] [CrossRef]
- Wang, X.S.; Zhang, C.; Karkkainen, T.; Chang, Z.; Cong, F.Y. Channel Increment Strategy-Based 1D Convolutional Neural Networks for Seizure Prediction Using Intracranial EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.L.; Jin, W.P.; Si, X.P.; Zhang, X.J.; Cao, J.L.; Wang, L.; Yin, S.Y.; Ming, D. Continuous Seizure Detection Based on Transformer and Long-Term iEEG. IEEE J. Biomed. Health Inform. 2022, 26, 5418–5427. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.S.; Zhang, G.H.; Wang, Y.; Yang, L.; Liang, Z.H.; Cong, F.Y. One-Dimensional Convolutional Neural Networks Combined with Channel Selection Strategy for Seizure Prediction Using Long-Term Intracranial EEG. Int. J. Neural Syst. 2022, 32, 2150048. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, T.; Guinle, M.I.B.; Grant, G.A.; Porter, B.E. Expanding eligibility for intracranial electroencephalography using Dexmedetomidine Hydrochloride in children with behavioral dyscontrol. Epilepsy Behav. 2024, 150, 109541. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Xiao, T.T.; Wang, Z.W.; Lv, H.B.; Wang, S.; Feng, H.L.; Zhao, S.S.; Zhao, Y.N. Hybrid Network for Patient-Specific Seizure Prediction from EEG Data. Int. J. Neural Syst. 2023, 33, 2350056. [Google Scholar] [CrossRef]
- Li, W.; Wang, H.; Zhuang, L.H. GCNs-FSMI: EEG recognition of mental illness based on fine-grained signal features and graph mutual information maximization. Expert Syst. Appl. 2023, 228, 120227. [Google Scholar] [CrossRef]
- Soni, S.; Seal, A.; Mohanty, S.K.; Sakurai, K. Electroencephalography signals-based sparse networks integration using a fuzzy ensemble technique for depression detection. Biomed. Signal Process. Control 2023, 85, 104873. [Google Scholar] [CrossRef]
- Teles, M.; Maximo, J.O.; Lahti, A.C.; Kraguljac, N.V. Topological Perturbations in the Functional Connectome Support the Deficit/Non-deficit Distinction in Antipsychotic Medication-Naïve First Episode Psychosis Patients. Schizophr. Bull. 2024, 50, 839–847. [Google Scholar] [CrossRef]
- Barnett, L.; Bossomaier, T. Transfer Entropy as a Log-Likelihood Ratio. Phys. Rev. Lett. 2012, 109, 138105. [Google Scholar] [CrossRef]
- Sun, B.A.; Lv, J.J.; Rui, L.G.; Yang, Y.X.; Chen, Y.G.; Ma, C.; Gao, Z.K. Seizure prediction in scalp EEG based channel attention dual-input convolutional neural network. Phys. A Stat. Mech. Its Appl. 2021, 584, 126376. [Google Scholar] [CrossRef]
- Miao, Y.; Suzuki, H.; Sugano, H.; Ueda, T.; Iimura, Y.; Matsui, R.; Tanaka, T. Causal Connectivity Network Analysis of Ictal Electrocorticogram With Temporal Lobe Epilepsy Based on Dynamic Phase Transfer Entropy. IEEE Trans. Biomed. Eng. 2024, 71, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Niu, Y.; Wang, C.H.; Dong, Y.Q.; Wang, B.; Wei, J.; Xiang, J.; Ma, J.H. Exploring the propagation pathway in individual patients with epilepsy: A stepwise effective connection approach. Biomed. Signal Process. Control 2024, 90, 105811. [Google Scholar] [CrossRef]
- Jiang, H.Y.; Croft, E.A.; Burke, M.G.; Assoc Computing, M. Social Cue Detection and Analysis Using Transfer Entropy. In Proceedings of the 19th Annual ACM/IEEE International Conference on Human-Robot Interaction (HRI), Boulder, CO, USA, 11–15 March 2024; pp. 323–332. [Google Scholar]
- Zhu, J.; Bellanger, J.J.; Shu, H.Z.; Jeannès, R.L. Contribution to Transfer Entropy Estimation via the <i>k</i>-Nearest-Neighbors Approach. Entropy 2015, 17, 4173–4201. [Google Scholar] [CrossRef]
- Ito, S. Backward transfer entropy: Informational measure for detecting hidden Markov models and its interpretations in thermodynamics, gambling and causality. Sci. Rep. 2016, 6, 36831. [Google Scholar] [CrossRef]
- Overbey, L.A.; Todd, M.D. Dynamic system change detection using a modification of the transfer entropy. J. Sound Vib. 2009, 322, 438–453. [Google Scholar] [CrossRef]
- Firestone, E.; Sonoda, M.; Kuroda, N.; Sakakura, K.; Jeong, J.W.; Lee, M.H.; Wada, K.; Takayama, Y.; Iijima, K.; Iwasaki, M.; et al. Sevoflurane-induced high-frequency oscillations, effective connectivity and intraoperative classification of epileptic brain areas. Clin. Neurophysiol. 2023, 150, 17–30. [Google Scholar] [CrossRef]
- Lin, G.C.; Lin, A.J.; Mi, Y.J.; Gu, D.L. Measurement of information transfer based on phase increment transfer entropy. Chaos Solitons Fractals 2023, 174, 113864. [Google Scholar] [CrossRef]
- Chen, R.Z.; Lin, K.B.; Hong, B.S.; Zhang, S.D.; Yang, F. Sparse graphs-based dynamic attention networks. Heliyon 2024, 10, e35938. [Google Scholar] [CrossRef]
- Jiang, B.; Lu, Y.; Chen, X.S.; Lu, X.H.; Lu, G.M. Graph Attention in Attention Network for Image Denoising. IEEE Trans. Syst. Man Cybern.-Syst. 2023, 53, 7077–7088. [Google Scholar] [CrossRef]
- Hu, B.; Guo, K.H.; Wang, X.K.; Zhang, J.; Zhou, D. RRL-GAT: Graph Attention Network-Driven Multilabel Image Robust Representation Learning. IEEE Internet Things J. 2022, 9, 9167–9178. [Google Scholar] [CrossRef]
- Wang, Q.; Cui, H.; Zhang, J.P.; Du, Y.; Zhou, Y.; Lu, X.J. Neighbor-Augmented Knowledge Graph Attention Network for Recommendation. Neural Process. Lett. 2023, 55, 8237–8253. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, X.Z.; Weng, W.; He, Y.F. Multi-Order-Content-Based Adaptive Graph Attention Network for Graph Node Classification. Symmetry 2023, 15, 1036. [Google Scholar] [CrossRef]
- La, Z.; Qian, Y.R.; Leng, H.Y.; Gu, T.Y.; Gong, W.J.; Chen, J.Y. MC-GAT: Multi-Channel Graph Attention Networks for Capturing Diverse Information in Complex Graphs. Cogn. Comput. 2024, 16, 595–607. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, X.D.; Yu, B. PD-GATv2: Positive difference second generation graph attention network based on multi-granularity in information systems to classification. Appl. Intell. 2024, 54, 5081–5096. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Y.F.; Cheng, Y.L.; He, Z.P.; Wei, X.Y.; Chen, Z.Y.; Zhou, Y. A Spatiotemporal Graph Attention Network Based on Synchronization for Epileptic Seizure Prediction. IEEE J. Biomed. Health Inform. 2023, 27, 900–911. [Google Scholar] [CrossRef]
- Kumar, S.V. Multi-view Stacked CNN-BiLSTM (MvS CNN-BiLSTM) for urban PM2.5 concentration prediction of India’s polluted cities. J. Clean. Prod. 2024, 444, 141259. [Google Scholar] [CrossRef]
- Wang, P.S.; Feng, H.B.; Du, X.B.; Nie, R.; Lin, Y.D.; Ma, C.X.; Zhang, L. EEG-Based Evaluation of Aesthetic Experience Using BiLSTM Network. Int. J. Hum.-Comput. Interact. 2023. [Google Scholar] [CrossRef]
- Burrello, A.; Schindler, K.; Benini, L.; Rahimi, A. Hyperdimensional Computing With Local Binary Patterns: One-Shot Learning of Seizure Onset and Identification of Ictogenic Brain Regions Using Short-Time iEEG Recordings. IEEE Trans. Biomed. Eng. 2020, 67, 601–613. [Google Scholar] [CrossRef]
Dataset | Patients | Acc | Sen | Spe | F1-Score |
---|---|---|---|---|---|
SWEZ | ID01 | 99.05 | 98.95 | 99.88 | 98.93 |
ID02 | 97.91 | 98.83 | 99.92 | 98.72 | |
ID03 | 98.98 | 100 | 100 | 99.58 | |
ID04 | 95.79 | 95.99 | 94.66 | 93.60 | |
ID05 | 99.08 | 99.58 | 100 | 98.79 | |
ID06 | 99.31 | 100 | 99.05 | 97.18 | |
ID07 | 97.28 | 97.88 | 98.46 | 97.87 | |
ID08 | 98.93 | 100 | 99.88 | 99.62 | |
ID09 | 98.83 | 98.64 | 99.72 | 98.62 | |
ID10 | 99.2 | 99.65 | 99.67 | 99.11 | |
ID11 | 99.68 | 100 | 100 | 99.72 | |
ID12 | 98.45 | 97.29 | 98.77 | 95.95 | |
ID13 | 99.45 | 100 | 100 | 99.75 | |
ID14 | 98.25 | 97.88 | 98.99 | 96.45 | |
ID15 | 98.88 | 99.68 | 99.83 | 98.32 | |
ID16 | 98.9 | 98.35 | 97.59 | 96.70 | |
Average | 98.64 | 98.90 | 99.18 | 98.09 | |
SPE | Sub01 | 99.02 | 100 | 99.92 | 99.45 |
Sub02 | 99.59 | 99.76 | 98.95 | 99.19 | |
Sub03 | 99.58 | 98.99 | 99.72 | 99.33 | |
Sub04 | 99.69 | 100 | 100 | 99.16 | |
Sub05 | 98.98 | 100 | 98.97 | 97.89 | |
Sub06 | 99.25 | 98.88 | 100 | 98.83 | |
Average | 99.35 | 99.61 | 99.59 | 98.98 |
Dataset | Model | Acc | Sen | Spe | Dataset | Model | Acc | Sen | Spe |
---|---|---|---|---|---|---|---|---|---|
SWEZ | TE+GAT | 96.28 | 97.37 | 97.54 | SPE | TE+GAT | 97.56 | 97.86 | 98.65 |
TE+BiLSTM | 96.00 | 97.09 | 96.99 | TE+BiLSTM | 96.57 | 96.88 | 98.25 | ||
MI+GAT+BiLSTM | 94.38 | 95.66 | 96.46 | MI+GAT+BiLSTM | 95.59 | 96.48 | 96.99 | ||
FC+GAT+BiLSTM | 94.75 | 95.06 | 96.84 | FC+GAT+BiLSTM | 95.67 | 97.06 | 96.85 | ||
GC+GAT+BiLSTM | 95.37 | 96.25 | 97.73 | GC+GAT+BiLSTM | 96.43 | 97.89 | 97.25 | ||
TE+GAT+BiLSTM | 97.24 | 97.92 | 98.11 | TE+GAT+BiLSTM | 98.55 | 99.06 | 99.15 |
Model | Acc | Sen | Spe |
---|---|---|---|
Burrello et al. [39] | 95.42 | 96.01 | 94.84 |
GCN | 79.33 | 78.64 | 89.92 |
GAT | 96.28 | 97.37 | 97.54 |
BiLSTM | 96.00 | 97.09 | 96.99 |
GCN+BiLSTM | 85.62 | 87.25 | 92.58 |
GAT+BiLSTM | 97.24 | 97.92 | 98.11 |
Patients | CSTGAT | Burrello et al. [39] | ||||
---|---|---|---|---|---|---|
Acc | Sen | Spe | Acc | Sen | Spe | |
ID04 | 93.79 | 94.02 | 89.28 | NA | 91.03 | 79.97 |
ID05 | 98.08 | 98.99 | 100 | NA | 80 | 96.88 |
ID12 | 95.45 | 92.45 | 96.45 | NA | 85.71 | 95.94 |
ID14 | 96.45 | 97.67 | 98.24 | NA | 88.57 | 49.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Xiang, J.; Dong, Y.; Wang, B.; Zhou, M.; Ma, J.; Niu, Y. Deep Learning for Epileptic Seizure Detection Using a Causal-Spatio-Temporal Model Based on Transfer Entropy. Entropy 2024, 26, 853. https://doi.org/10.3390/e26100853
Sun J, Xiang J, Dong Y, Wang B, Zhou M, Ma J, Niu Y. Deep Learning for Epileptic Seizure Detection Using a Causal-Spatio-Temporal Model Based on Transfer Entropy. Entropy. 2024; 26(10):853. https://doi.org/10.3390/e26100853
Chicago/Turabian StyleSun, Jie, Jie Xiang, Yanqing Dong, Bin Wang, Mengni Zhou, Jiuhong Ma, and Yan Niu. 2024. "Deep Learning for Epileptic Seizure Detection Using a Causal-Spatio-Temporal Model Based on Transfer Entropy" Entropy 26, no. 10: 853. https://doi.org/10.3390/e26100853
APA StyleSun, J., Xiang, J., Dong, Y., Wang, B., Zhou, M., Ma, J., & Niu, Y. (2024). Deep Learning for Epileptic Seizure Detection Using a Causal-Spatio-Temporal Model Based on Transfer Entropy. Entropy, 26(10), 853. https://doi.org/10.3390/e26100853