A Unified Gas-Kinetic Particle Method for Radiation Transport in an Anisotropic Scattering Medium
Abstract
:1. Introduction
2. Numerical Methods
2.1. Isotropic-UGKP Method
2.1.1. Gray Radiative Transfer System with Isotropic Scattering
2.1.2. Macroscopic Solver for the Isotropic-UGKP Method
Algorithm 1 Source iteration algorithm for macroscopic energy evolution. |
|
2.1.3. Microscopic Solver for the Isotropic-UGKP Method
Algorithm 2 Photon re-sampling and tracking algorithm for microscopic radiation intensity evolution. |
|
2.2. Anisotropic-UGKP Method
2.2.1. The Difference between Isotropic and Anisotropic System
2.2.2. Macroscopic Solver for the Anisotropic-UGKP Method
2.2.3. Microscopic Solver for the Anisotropic-UGKP Method
Algorithm 3 Photon re-sampling and tracking algorithm for the adapted microscopic radiation intensity evolution. |
|
2.2.4. Derivation and Discussion of the Equivalent Multiscale Phase Function
2.2.5. Summary for the Anisotropic-UGKP Method
Algorithm 4 The algorithm for the anisotropic UGKP method. |
|
2.3. Asymptotic Analysis
3. Numerical Tests
3.1. One-Dimensional (1D) Neutron Problem
3.2. Two-Dimensional (2D) Radiation Heat Transfer Problem
3.3. Two-Dimensional (2D) Radiation Heat Transfer Problem with Collimated Incidence
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, B.; Zhao, C. The dependent scattering effect on radiative properties of micro/nanoscale discrete disordered media. Annu. Rev. Heat Transf. 2020, 23, 231–353. [Google Scholar] [CrossRef]
- Losseva, T.V. Method for radiation transfer calculation in numerical simulation of strong perturbation in the atmosphere. In Proceedings of the 26th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics, Moscow, Russia, 29 June–3 July 2020. [Google Scholar]
- Smirnov, B.M.; Son, E.E. Electric Processes in Atmospheric Air. High Temp. 2022, 60, 536–569. [Google Scholar] [CrossRef]
- Lan, K. Dream fusion in octahedral spherical hohlraum. Matter Radiat. Extrem. 2022, 7, 055701. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Cao, H.; Pan, K.; Li, S.; Xie, X.; Deng, B.; Wang, Q.; Cao, Z.; Hou, L.; et al. Determination of laser entrance hole size for ignition-scale octahedral spherical hohlraums. Matter Radiat. Extrem. 2022, 7, 065901. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, Y.; Chen, Q.; Jiang, L.; Zheng, S. Flow and thermal radiation characteristics of a turbulent flame by large eddy simulation. Phys. Fluids 2022, 34, 087127. [Google Scholar] [CrossRef]
- Dai, G.; Huangfu, J.; Wang, X.; Du, S.; Zhao, T. A Review of Radiative Heat Transfer in Fixed-Bed Particle Solar Receivers. Sustainability 2023, 15, 9918. [Google Scholar] [CrossRef]
- Mazumder, S.; Roy, S.P. Modeling Thermal Radiation in Combustion Environments: Progress and Challenges. Energies 2023, 16, 4250. [Google Scholar] [CrossRef]
- Wollaber, A.B. Four decades of implicit Monte Carlo. J. Comput. Theor. Trans. 2016, 45, 1–70. [Google Scholar] [CrossRef]
- Noebauer, U.M.; Sim, S.A. Monte Carlo radiative transfer. Living Rev. Comput. Astrophys. 2019, 5, 1–103. [Google Scholar] [CrossRef]
- Howell, J.R.; Daun, K.J. The past and future of the Monte Carlo method in thermal radiation transfer. J. Heat Transfer. 2021, 143, 100801. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, S.; Sun, W. A positive and asymptotic preserving filtered PN method for the gray radiative transfer equations. J. Comput. Phys. 2021, 444, 110546. [Google Scholar] [CrossRef]
- Huang, J.; Cheng, Y.; Christlieb, A.J.; Roberts, L.F. Machine learning moment closure models for the radiative transfer equation I: Directly learning a gradient based closure. J. Comput. Phys. 2022, 453, 110941. [Google Scholar] [CrossRef]
- Alldredge, G.W.; Li, R.; Li, W. Approximating the M2 method by the extended quadrature method of moments for radiative transfer in slab geometry. Kinet. Relat. Mod. 2016, 9, 237–249. [Google Scholar] [CrossRef]
- Cai, Z.; Li, R.; Wang, Y. An Efficient NRxx Method for Boltzmann-BGK Equation. J. Sci. Comput. 2012, 50, 103–119. [Google Scholar] [CrossRef]
- Chen, S.; Li, B.; Sun, Y. Chebyshev collocation spectral method for solving radiative transfer with the modified discrete ordinates formulations. Int. J. Heat Mass Transf. 2015, 88, 388–397. [Google Scholar] [CrossRef]
- Roos, T.H.; Harms, T.M.; Du Toit, C.G. Conservation of scattered energy and asymmetry factor in the new rotationally symmetric spherical discretisation scheme. Int. J. Heat Mass Transf. 2016, 101, 205–225. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Shu, C. From lattice Boltzmann method to lattice Boltzmann flux solver. Entropy 2015, 17, 7713–7735. [Google Scholar] [CrossRef]
- Chen, Z.; Shu, C.; Wang, Y.; Yang, L.; Tan, D. A Simplified Lattice Boltzmann Method without Evolution of Distribution Function. Adv. Appl. Math. Mech. 2017, 9, 1–22. [Google Scholar] [CrossRef]
- Yuan, R.; Liu, S.; Zhong, C. A novel multiscale discrete velocity method for model kinetic equations. Commun. Nonlinear Sci. Numer. Simul. 2021, 92, 105473. [Google Scholar] [CrossRef]
- Chen, Z.; Shu, C.; Yang, L.; Zhao, X.; Liu, Y. Immersed boundary–simplified thermal lattice Boltzmann method for incompressible thermal flows. Phys. Fluids 2020, 32, 013605. [Google Scholar] [CrossRef]
- Fleck, J.A., Jr.; Cummings, J.D., Jr. An implicit Monte Carlo scheme for calculating time and frequency dependent nonlinear radiation transport. J. Comput. Phys. 1971, 8, 313–342. [Google Scholar] [CrossRef]
- Mieussens, L. On the asymptotic preserving property of the unified gas kinetic scheme for the diffusion limit of linear kinetic models. J. Comput. Phys. 2013, 253, 138–156. [Google Scholar] [CrossRef]
- Sun, W.; Jiang, S.; Xu, K. An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations. J. Comput. Phys. 2015, 285, 265–279. [Google Scholar] [CrossRef]
- Sun, W.; Jiang, S.; Xu, K.; Li, S. An asymptotic preserving unified gas kinetic scheme for frequency-dependent radiative transfer equations. J. Comput. Phys. 2015, 302, 222–238. [Google Scholar] [CrossRef]
- Sun, W.; Jiang, S.; Xu, K. A multidimensional unified gas-kinetic scheme for radiative transfer equations on unstructured mesh. J. Comput. Phys. 2017, 351, 455–472. [Google Scholar] [CrossRef]
- Xu, K.; Huang, J. A unified gas-kinetic scheme for continuum and rarefied flows. J. Comput. Phys. 2010, 229, 7747–7764. [Google Scholar] [CrossRef]
- Liu, C.; Xu, K.; Sun, Q.; Cai, Q. A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations. J. Comput. Phys. 2020, 401, 108977. [Google Scholar] [CrossRef]
- Guo, Z.; Xu, K.; Wang, R. Discrete unified gas kinetic scheme for all Knudsen number flows: Low-speed isothermal case. Phys. Rev. E 2013, 88, 033305. [Google Scholar] [CrossRef]
- Guo, Z.; Xu, K. Progress of discrete unified gas-kinetic scheme for multiscale flows. Adv. Aerodyn. 2021, 3, 6. [Google Scholar] [CrossRef]
- Chen, J.; Liu, S.; Wang, Y.; Zhong, C. Conserved discrete unified gas-kinetic scheme with unstructured discrete velocity space. Phys. Rev. E 2019, 100, 043305. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhong, C.; Xu, K. Implicit unified gas-kinetic scheme for steady state solutions in all flow regimes. J. Comput. Phys. 2016, 315, 16–38. [Google Scholar] [CrossRef]
- Sun, W.; Jiang, S.; Xu, K. An implicit unified gas kinetic scheme for radiative transfer with equilibrium and non-equilibrium diffusive limits. Commun. Comput. Phys. 2017, 22, 889–912. [Google Scholar] [CrossRef]
- Sun, W.; Jiang, S.; Xu, K. An asymptotic preserving implicit unified gas kinetic scheme for frequency-dependent radiative transfer equations. Int. J. Numer. Anal. Mod. 2018, 15, 134–153. [Google Scholar]
- Zhu, Y.; Zhong, C.; Xu, K. An implicit unified gas-kinetic scheme for unsteady flow in all Knudsen regimes. J. Comput. Phys. 2019, 386, 190–217. [Google Scholar] [CrossRef]
- Shi, Y.; Song, P.; Sun, W. An asymptotic preserving unified gas kinetic particle method for radiative transfer equations. J. Comput. Phys. 2020, 420, 109687. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, C.; Shen, H.; Zou, S.; Tian, B. A unified gas-kinetic particle method for frequency-dependent radiative transfer equations with isotropic scattering process on unstructured mesh. Commun. Comput. Phys. 2023, accepted. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, Y.; Xu, K. Unified gas-kinetic wave-particle methods I: Continuum and rarefied gas flow. J. Comput. Phys. 2020, 401, 108977. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, C.; Zhong, C.; Xu, K. Unified gas-kinetic wave-particle methods. II. Multiscale simulation on unstructured mesh. Phys. Fluids 2019, 31, 067105. [Google Scholar] [CrossRef]
- Li, W.; Liu, C.; Zhu, Y.; Zhang, J.; Xu, K. Unified gas-kinetic wave-particle methods III: Multiscale photon transport. J. Comput. Phys. 2020, 408, 109280. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, C.; Shen, H.; Xiao, G.; Li, J. A rigorous model reduction for the anisotropic-scattering transport process. Phys. Fluids 2023, 35, 122015. [Google Scholar] [CrossRef]
- Li, Q.; Wang, L. Implicit asymptotic preserving method for linear transport equations. Commun. Comput. Phys. 2017, 22, 157–181. [Google Scholar] [CrossRef]
- Kim, T.; Lee, H. Effect of anisotropic scattering on radiative heat transfer in two-dimensional rectangular enclosures. Int. J. Heat Mass Transf. 1988, 31, 1711–1721. [Google Scholar] [CrossRef]
- Song, X.; Zhang, C.; Zhou, X.; Guo, Z. Discrete unified gas kinetic scheme for multiscale anisotropic radiative heat transfer. Adv. Aerodyn. 2020, 2, 3. [Google Scholar] [CrossRef]
- Kim, T.; Lee, H. Radiative transfer in two-dimensional anisotropic scattering media with collimated incidence. J. Quant. Spectrosc. Radiat. 1989, 42, 225–238. [Google Scholar] [CrossRef]
l | F1 | F2 | B1 | B2 |
---|---|---|---|---|
0 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
1 | 2.53602 | 2.00917 | −0.56524 | −1.20000 |
2 | 3.56549 | 1.56339 | 0.29783 | 0.50000 |
3 | 3.97976 | 0.67407 | 0.08571 | |
4 | 4.00292 | 0.22215 | 0.01003 | |
5 | 3.66401 | 0.04725 | 0.00063 | |
6 | 3.01601 | 0.00671 | ||
7 | 2.23304 | 0.00068 | ||
8 | 1.30251 | 0.00005 | ||
9 | 0.53463 | |||
10 | 0.20136 | |||
11 | 0.05480 | |||
12 | 0.01099 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Liu, C.; Shen, H.; Xiao, G.; Li, J. A Unified Gas-Kinetic Particle Method for Radiation Transport in an Anisotropic Scattering Medium. Entropy 2024, 26, 52. https://doi.org/10.3390/e26010052
Hu Y, Liu C, Shen H, Xiao G, Li J. A Unified Gas-Kinetic Particle Method for Radiation Transport in an Anisotropic Scattering Medium. Entropy. 2024; 26(1):52. https://doi.org/10.3390/e26010052
Chicago/Turabian StyleHu, Yuan, Chang Liu, Huayun Shen, Gang Xiao, and Jinghong Li. 2024. "A Unified Gas-Kinetic Particle Method for Radiation Transport in an Anisotropic Scattering Medium" Entropy 26, no. 1: 52. https://doi.org/10.3390/e26010052
APA StyleHu, Y., Liu, C., Shen, H., Xiao, G., & Li, J. (2024). A Unified Gas-Kinetic Particle Method for Radiation Transport in an Anisotropic Scattering Medium. Entropy, 26(1), 52. https://doi.org/10.3390/e26010052