Novel Entropy-Based Metrics for Long-Term Atrial Fibrillation Recurrence Prediction Following Surgical Ablation: Insights from Preoperative Electrocardiographic Analysis
Abstract
:1. Introduction
2. Materials
3. Methods
3.1. Preprocessing
3.2. Proposed Method
3.2.1. Relative Wavelet Energy
3.2.2. Stationary Wavelet Entropy Variability
3.3. Reference Methods
3.4. Classification Performance Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Acronym | Definition |
AF | Atrial fibrillation |
SR | Sinus rhythm |
ECV | Electrical cardioversion |
CA | Catheter ablation |
AA | Atrial activity |
ECG | Electrocardiogram |
Amplitude of the fibrillatory waves | |
Dominant atrial frequency | |
Sample entropy | |
Mean of the relative wavelet energy | |
Standard deviation of the relative wavelet energy | |
Stationary wavelet entropy variability | |
WT | Wavelet transform |
SWT | Stationary wavelet transform |
IIR | Infinite impulse response |
f-waves | Fibrillatory waves |
ROC | Receiver operating characteristic |
Se | Sensitivity |
Sp | Specificity |
Acc | Accuracy |
AUC | Area under the ROC curve |
PPV | Positive predictive value |
NPV | Negative predictive value |
References
- Lippi, G.; Sanchis-Gomar, F.; Cervellin, G. Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge. Int. J. Stroke 2021, 16, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Zoni-Berisso, M.; Lercari, F.; Carazza, T.; Domenicucci, S. Epidemiology of atrial fibrillation: European perspective. Clin. Epidemiol. 2014, 6, 213–220. [Google Scholar] [CrossRef] [PubMed]
- United Nations and Department of Economic and Social Affairs, Population Division. World Population Ageing 2017—Highlights (ST/ESA/SER. A/397). 2017. Available online: https://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2017_Highlights.pdf (accessed on 12 September 2023).
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS) The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef] [PubMed]
- Di Carlo, A.; Zaninelli, A.; Mori, F.; Consoli, D.; Bellino, L.; Baldereschi, M.; Sgherzi, B.; Gradia, C.; D’Alfonso, M.G.; Cattarinussi, A.; et al. Prevalence of atrial fibrillation subtypes in Italy and projections to 2060 for Italy and Europe. J. Am. Geriatr. Soc. 2020, 68, 2534–2541. [Google Scholar] [CrossRef] [PubMed]
- Morin, D.P.; Bernard, M.L.; Madias, C.; Rogers, P.A.; Thihalolipavan, S.; Estes III, N.M. The state of the art: Atrial fibrillation epidemiology, prevention, and treatment. Mayo Clin. Proc. 2016, 91, 1778–1810. [Google Scholar] [CrossRef]
- Deshmukh, A.; Iglesias, M.; Khanna, R.; Beaulieu, T. Healthcare utilization and costs associated with a diagnosis of incident atrial fibrillation. Heart Rhythm O2 2022, 3, 577–586. [Google Scholar] [CrossRef]
- Carlsson, J.; Miketic, S.; Windeler, J.; Cuneo, A.; Haun, S.; Micus, S.; Walter, S.; Tebbe, U.; STAF Investigators. Randomized trial of rate-control versus rhythm-control in persistent atrial fibrillation: The Strategies of Treatment of Atrial Fibrillation (STAF) study. J. Am. Coll. Cardiol. 2003, 41, 1690–1696. [Google Scholar] [CrossRef]
- Van Wagoner, D.R.; Piccini, J.P.; Albert, C.M.; Anderson, M.E.; Benjamin, E.J.; Brundel, B.; Califf, R.M.; Calkins, H.; Chen, P.S.; Chiamvimonvat, N.; et al. Progress toward the prevention and treatment of atrial fibrillation: A summary of the Heart Rhythm Society Research Forum on the Treatment and Prevention of Atrial Fibrillation, Washington, DC, December 9–10, 2013. Heart Rhythm 2015, 12, e5–e29. [Google Scholar] [CrossRef]
- Mont, L.; Guasch, E. Atrial fibrillation progression: How sick is the atrium? Heart Rhythm 2017, 14, 808–809. [Google Scholar] [CrossRef]
- Kik, C.; Mouws, E.M.; Bogers, A.J.; de Groot, N.M.S. Intra-operative mapping of the atria: The first step towards individualization of atrial fibrillation therapy? Expert Rev. Cardiovasc. Ther. 2017, 15, 537–545. [Google Scholar] [CrossRef]
- Anselmino, M.; Matta, M.; Castagno, D.; Giustetto, C.; Gaita, F. Catheter ablation of atrial fibrillation in chronic heart failure: State-of-the-art and future perspectives. Europace 2016, 18, 638–647. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, B.; Brugada, J.; Arbelo, E.; Laroche, C.; Bayramova, S.; Bertini, M.; Letsas, K.P.; Pison, L.; Romanov, A.; Scherr, D.; et al. Ablation strategies for different types of atrial fibrillation in Europe: Results of the ESC-EORP EHRA Atrial Fibrillation Ablation Long-Term registry. Europace 2020, 22, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Dretzke, J.; Chuchu, N.; Agarwal, R.; Herd, C.; Chua, W.; Fabritz, L.; Bayliss, S.; Kotecha, D.; Deeks, J.J.; Kirchhof, P.; et al. Predicting recurrent atrial fibrillation after catheter ablation: A systematic review of prognostic models. Europace 2020, 22, 748–760. [Google Scholar] [CrossRef]
- Sharples, L.; Everett, C.; Singh, J.; Mills, C.; Spyt, T.; Abu-Omar, Y.; Fynn, S.; Thorpe, B.; Stoneman, V.; Goddard, H.; et al. Amaze: A double-blind, multicentre randomised controlled trial to investigate the clinical effectiveness and cost-effectiveness of adding an ablation device-based maze procedure as an adjunct to routine cardiac surgery for patients with pre-existing atria. Health Technol. Assess. 2018, 22, 1–132. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.L. A brief overview of surgery for atrial fibrillation. Ann. Cardiothorac. Surg. 2014, 3, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Damiano, R.J., Jr.; Schwartz, F.H.; Bailey, M.S.; Maniar, H.S.; Munfakh, N.A.; Moon, M.R.; Schuessler, R.B. The Cox maze IV procedure: Predictors of late recurrence. J. Thorac. Cardiovasc. Surg. 2011, 141, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.M.; Maniar, H.S.; Camillo, C.J.; Schuessler, R.B.; Boineau, J.P.; Sundt, T.M., III; Cox, J.L.; Damiano, R.J., Jr. The Cox maze III procedure for atrial fibrillation: Long-term efficacy in patients undergoing lone versus concomitant procedures. J. Thorac. Cardiovasc. Surg. 2003, 126, 1822–1827. [Google Scholar] [CrossRef] [PubMed]
- Henn, M.C.; Lancaster, T.S.; Miller, J.R.; Sinn, L.A.; Schuessler, R.B.; Moon, M.R.; Melby, S.J.; Maniar, H.S.; Damiano, R.J., Jr. Late outcomes after the Cox maze IV procedure for atrial fibrillation. J. Thorac. Cardiovasc. Surg. 2015, 150, 1168–1178. [Google Scholar] [CrossRef]
- Engelsgaard, C.S.; Pedersen, K.B.; Riber, L.P.; Pallesen, P.A.; Brandes, A. The long-term efficacy of concomitant maze IV surgery in patients with atrial fibrillation. IJC Heart Vasc. 2018, 19, 20–26. [Google Scholar] [CrossRef]
- Chen, M.C.; Chang, J.P.; Chang, H.W. Preoperative atrial size predicts the success of radiofrequency maze procedure for permanent atrial fibrillation in patients undergoing concomitant valvular surgery. Chest 2004, 125, 2129–2134. [Google Scholar] [CrossRef]
- Wu, C.C.; Chang, J.P.; Chen, M.C.; Cheng, C.I.; Chung, W.J. Long-term results of radiofrequency maze procedure for persistent atrial fibrillation with concomitant mitral surgery. J. Thorac. Dis. 2017, 9, 5176–5183. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Xue, Y.; Zhou, Q.; Yu, M.; Tang, C.; Wang, D. Late outcome of surgical radiofrequency ablation for persistent valvular atrial fibrillation in China: A single-center study. J. Cardiothorac. Surg. 2017, 12, 63. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Song, L.; Liang, C.; Zhang, H.; Tan, H.; Sun, Y.; Guo, R.; Liu, L. Machine learning-based analysis of risk factors for atrial fibrillation recurrence after Cox-Maze IV procedure in patients with atrial fibrillation and chronic valvular disease: A retrospective cohort study with a control group. Front. Cardiovasc. Med. 2023, 10, 1140670. [Google Scholar] [CrossRef]
- Alcaraz, R.; Rieta, J.J. A review on sample entropy applications for the non-invasive analysis of atrial fibrillation electrocardiograms. Biomed. Signal Process. Control 2010, 5, 1–14. [Google Scholar] [CrossRef]
- Chiarugi, F.; Varanini, M.; Cantini, F.; Conforti, F.; Vrouchos, G. Noninvasive ECG as a tool for predicting termination of paroxysmal atrial fibrillation. IEEE Trans. Biomed. Eng. 2007, 54, 1399–1406. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, A.; Alcaraz, R.; Hornero, F.; Rieta, J.J. Preoperative study of the surface ECG for the prognosis of atrial fibrillation maze surgery outcome at discharge. Physiol. Meas. 2014, 35, 1409. [Google Scholar] [CrossRef]
- García, M.; Ródenas, J.; Alcaraz, R.; Rieta, J.J. Application of the relative wavelet energy to heart rate independent detection of atrial fibrillation. Comput. Methods Programs Biomed. 2016, 131, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Ródenas, J.; García, M.; Alcaraz, R.; Rieta, J.J. Combined nonlinear analysis of atrial and ventricular series for automated screening of atrial fibrillation. Complexity 2017, 2017, 2163610. [Google Scholar] [CrossRef]
- Petrutiu, S.; Ng, J.; Nijm, G.M.; Al-Angari, H.; Swiryn, S.; Sahakian, A.V. Atrial fibrillation and waveform characterization. A time domain perspective in the surface ECG. IEEE Eng. Med. Biol. Mag. 2006, 25, 24–30. [Google Scholar] [CrossRef]
- García, M.; Martínez-Iniesta, M.; Ródenas, J.; Rieta, J.J.; Alcaraz, R. A novel wavelet-based filtering strategy to remove powerline interference from electrocardiograms with atrial fibrillation. Physiol. Meas. 2018, 39, 115006. [Google Scholar] [CrossRef]
- Dotsinsky, I.; Stoyanov, T. Optimization of bi-directional digital filtering for drift suppression in electrocardiogram signals. J. Med Eng. Technol. 2004, 28, 178–180. [Google Scholar] [CrossRef] [PubMed]
- Sörnmo, L.; Laguna, P. Bioelectrical Signal Processing in Cardiac and Neurological Applications; Academic Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Martínez, A.; Alcaraz, R.; Rieta, J.J. Application of the phasor transform for automatic delineation of single-lead ECG fiducial points. Physiol. Meas. 2010, 31, 1467. [Google Scholar] [CrossRef] [PubMed]
- Alcaraz, R.; Rieta, J.J. Adaptive singular value cancelation of ventricular activity in single-lead atrial fibrillation electrocardiograms. Physiol. Meas. 2008, 29, 1351–1369. [Google Scholar] [CrossRef] [PubMed]
- Barbaro, V.; Bartolini, P.; Calcagnini, G.; Censi, F.; Morelli, S.; Michelucci, A. Mapping the organization of atrial fibrillation with basket catheters part I: Validation of a real-time algorithm. Pacing Clin. Electrophysiol. 2001, 24, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Faes, L.; Nollo, G.; Antolini, R.; Gaita, F.; Ravelli, F. A method for quantifying atrial fibrillation organization based on wave-morphology similarity. IEEE Trans. Biomed. Eng. 2002, 49, 1504–1513. [Google Scholar] [CrossRef] [PubMed]
- Everett, T.H.; Kok, L.C.; Vaughn, R.H.; Moorman, R.; Haines, D.E. Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Trans. Biomed. Eng. 2001, 48, 969–978. [Google Scholar] [CrossRef] [PubMed]
- Mallat, S. A Wavelet Tour of Signal Processing; Elsevier: Berlin/Heidelberg, Germany, 1999. [Google Scholar] [CrossRef]
- Addison, P.S. Wavelet transforms and the ECG: A review. Physiol. Meas. 2005, 26, R155. [Google Scholar] [CrossRef] [PubMed]
- Asgari, S.; Mehrnia, A.; Moussavi, M. Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine. Comput. Biol. Med. 2015, 60, 132–142. [Google Scholar] [CrossRef]
- Bollmann, A. Quantification of electrical remodeling in human atrial fibrillation. Cardiovasc. Res. 2000, 47, 207–209. [Google Scholar] [CrossRef]
- Lake, D.E.; Moorman, J.R. Accurate estimation of entropy in very short physiological time series: The problem of atrial fibrillation detection in implanted ventricular devices. Am. J. Physiol.-Heart Circ. Physiol. 2011, 300, H319–H325. [Google Scholar] [CrossRef]
- Welch, P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.-Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed]
- Alcaraz, R.; Rieta, J.J. Time and frequency recurrence analysis of persistent atrial fibrillation after electrical cardioversion. Physiol. Meas. 2009, 30, 479. [Google Scholar] [CrossRef] [PubMed]
- Refaeilzadeh, P.; Tang, L.; Liu, H. Cross-Validation. In Encyclopedia of Database Systems; Liu, L., Özsu, M.T., Eds.; Springer: New York, NY, USA, 2009; pp. 532–538. [Google Scholar] [CrossRef]
- Habibzadeh, F.; Habibzadeh, P.; Yadollahie, M. On determining the most appropriate test cut-off value: The case of tests with continuous results. Biochem. Med. 2016, 26, 297–307. [Google Scholar] [CrossRef]
- Rückstieß, T.; Osendorfer, C.; van der Smagt, P. Sequential feature selection for classification. In AI 2011: Advances in Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2011; pp. 132–141. [Google Scholar] [CrossRef]
- Kakuta, T.; Fukushima, S.; Minami, K.; Saito, T.; Kawamoto, N.; Tadokoro, N.; Ikuta, A.; Kobayashi, J.; Fujita, T. Novel risk score for predicting recurrence of atrial fibrillation after the Cryo-Maze procedure. Eur. J. Cardio-Thorac. Surg. 2021, 59, 1218–1225. [Google Scholar] [CrossRef]
- Takahashi, Y.; Sanders, P.; Jais, P.; Hocini, M.; Dubois, R.; Rotter, M.; Rostock, T.; Nalliah, C.J.; Sacher, F.; Clémenty, J.; et al. Organization of frequency spectra of atrial fibrillation: Relevance to radiofrequency catheter ablation. J. Cardiovasc. Electrophysiol. 2006, 17, 382–388. [Google Scholar] [CrossRef]
Feature | Se (%) | Sp (%) | Acc (%) | AUC (%) | PPV (%) | NPV (%) |
---|---|---|---|---|---|---|
58.47 | 69.61 | 63.31 | 58.13 | 71.51 | 56.24 | |
83.20 | 27.73 | 59.13 | 56.54 | 60.03 | 55.86 | |
91.24 | 23.85 | 61.99 | 54.79 | 60.98 | 67.61 | |
80.83 | 67.09 | 74.87 | 71.25 | 76.21 | 72.85 | |
89.30 | 28.09 | 62.74 | 58.96 | 61.83 | 66.82 | |
70.91 | 51.53 | 62.50 | 59.38 | 65.62 | 57.59 | |
88.21 | 41.79 | 68.07 | 55.98 | 66.41 | 73.10 | |
87.93 | 28.66 | 62.21 | 60.00 | 61.65 | 64.54 | |
83.58 | 40.94 | 65.07 | 58.40 | 64.86 | 65.65 | |
86.33 | 29.36 | 61.61 | 59.00 | 61.45 | 62.22 |
Features Used in the Model | Se (%) | Sp (%) | Acc (%) | AUC (%) | PPV (%) | NPV (%) |
---|---|---|---|---|---|---|
and | 80.33 | 67.70 | 74.85 | 71.33 | 76.44 | 72.52 |
and | 80.30 | 79.22 | 79.83 | 77.31 | 83.44 | 75.51 |
, , and | 80.93 | 79.35 | 80.25 | 77.73 | 83.64 | 76.14 |
, , and | 78.87 | 76.87 | 78.00 | 74.50 | 81.64 | 73.61 |
, , and | 80.03 | 74.78 | 77.75 | 74.76 | 80.54 | 74.17 |
, , and | 79.43 | 73.43 | 76.83 | 72.77 | 79.59 | 73.24 |
, , and | 75.50 | 71.26 | 73.66 | 71.44 | 77.41 | 69.04 |
Study | Kind of AF | Relevant Single Features | Classification Model | Best Results |
---|---|---|---|---|
Chen et al. [21] | Permanent | Left atrial area | Linear discriminant analysis with resubstitution validation | Se = 50.0%; Sp = 86.2% |
Wu et al. [22] | Persistent | AF duration Left atrial diameter Right atrial area Intake of beta-blockers | Logistic regression with resubstitution validation | Se = 79.9%; Sp = 73.3%; Acc = 74.9% |
Cao et al. [23] | Persistent | AF duration B-type natriuretic peptide Heart rate Left atrial diameter | Logistic regression with resubstitution validation | Se = 75.1%; Sp = 81.5%; Acc = 75.8% |
Jiang et al. [24] | Paroxysmal and persistent | AF duration Left ventricular ejection fraction Neutrophil–lymphocyte ratio Left atrial diameter Heart rate Rhythm after surgery | Extreme gradient boosting with 5-fold cross-validation | Se = 63.3%; Acc = 80.2%; AUC = 76.8% |
Kakuta et al. [50] | Persistent | f-wave voltage in V1 AF duration Left atrial volume index Age | Logistic regression with hold-out validation | AUC = 78.0% |
This work | Permanent | Decision tree with 100 repetitions of 5-fold cross-validation | Se = 80.9%; Sp = 79.4%; Acc = 80.3%; AUC = 77.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escribano, P.; Ródenas, J.; García, M.; Hornero, F.; Gracia-Baena, J.M.; Alcaraz, R.; Rieta, J.J. Novel Entropy-Based Metrics for Long-Term Atrial Fibrillation Recurrence Prediction Following Surgical Ablation: Insights from Preoperative Electrocardiographic Analysis. Entropy 2024, 26, 28. https://doi.org/10.3390/e26010028
Escribano P, Ródenas J, García M, Hornero F, Gracia-Baena JM, Alcaraz R, Rieta JJ. Novel Entropy-Based Metrics for Long-Term Atrial Fibrillation Recurrence Prediction Following Surgical Ablation: Insights from Preoperative Electrocardiographic Analysis. Entropy. 2024; 26(1):28. https://doi.org/10.3390/e26010028
Chicago/Turabian StyleEscribano, Pilar, Juan Ródenas, Manuel García, Fernando Hornero, Juan M. Gracia-Baena, Raúl Alcaraz, and José J. Rieta. 2024. "Novel Entropy-Based Metrics for Long-Term Atrial Fibrillation Recurrence Prediction Following Surgical Ablation: Insights from Preoperative Electrocardiographic Analysis" Entropy 26, no. 1: 28. https://doi.org/10.3390/e26010028
APA StyleEscribano, P., Ródenas, J., García, M., Hornero, F., Gracia-Baena, J. M., Alcaraz, R., & Rieta, J. J. (2024). Novel Entropy-Based Metrics for Long-Term Atrial Fibrillation Recurrence Prediction Following Surgical Ablation: Insights from Preoperative Electrocardiographic Analysis. Entropy, 26(1), 28. https://doi.org/10.3390/e26010028