Path Counting on Tree-like Graphs with a Single Entropic Trap: Critical Behavior and Finite Size Effects
Abstract
:1. Introduction
2. Model and Research Questions
3. Critical State on an Infinite Tree
4. Critical Behavior on Finite Graphs
Random Regular Graph (RRG)
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newman, M.E.J. Networks; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Barabási, A.L. Network Science; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Masuda, N.; Porter, M.; Lambiotte, R. Random walks and diffusion on networks. Phys. Rep. 2017, 716–717, 1–58. [Google Scholar] [CrossRef]
- Grosberg, A.Y.; Khokhlov, A. Statistical Physics of Macromolecules; American Institute of Physics: Melville, NY, USA, 1994. [Google Scholar]
- Lifshitz, I.M. Some problems of the statistical theory of biopolymers. Sov. Phys. JETP 1969, 28, 1280. [Google Scholar]
- Lifshitz, I.M.; Grosberg, A.Y.; Khokhlov, A.R. Some problems of the statistical physics of polymer chains with volume interaction. Rev. Mod. Phys. 1978, 50, 683. [Google Scholar] [CrossRef]
- Ternovsky, F.; Nyrkova, I.; Khokhlov, A. Statistics of an ideal polymer chain near the bifurcation region of a narrow tube. Phys. A Stat. Mech. Its Appl. 1992, 184, 342–353. [Google Scholar] [CrossRef]
- Nechaev, S.; Tamm, M.; Valba, O. Path counting on simple graphs: From escape to localization. J. Stat. Mech. Theory Exp. 2017, 053301. [Google Scholar] [CrossRef]
- Burda, Z.; Duda, J.; Luck, J.M.; Waclaw, B. Localization of the Maximal Entropy Random Walk. Phys. Rev. Lett. 2009, 102, 160602. [Google Scholar] [CrossRef] [PubMed]
- Burda, Z.; Duda, J.; Luck, J.M.; Waclaw, B. The various facets of random walk entropy. Acta Phys. Polon. B 2010, 41, 949. [Google Scholar]
- Gorsky, A.S.; Nechaev, S.K.; Valov, A.F. On statistical models on super trees. J. High Energy Phys. 2018, 123. [Google Scholar] [CrossRef]
- Matyushina, Z.D. Statistics of paths on graphs with two heavy roots. arXiv 2023, arXiv:2302.05876. [Google Scholar] [CrossRef]
- Ochab, J.K.; Burda, Z. Exact Solution for Statics and Dynamics of Maximal Entropy Random Walk on Cayley Trees. Phys. Rev. E 2012, 85, 021145. [Google Scholar] [CrossRef]
- Sood, V.; Grassberger, P. Localization transition of biased random walks on random networks. Phys. Rev. Lett. 2007, 99, 098701. [Google Scholar] [CrossRef]
- Monthus, C.; Texier, C. Random walk on the Bethe lattice and hyperbolic Brownian motion J. Phys. A Math. Gen. 1996, 29, 2399. [Google Scholar] [CrossRef]
- Bénichou, O.; Voituriez, R. Comment on “Localization transition of biased random walks on random networks”. Phys. Rev. Lett. 2007, 99, 209801. [Google Scholar] [CrossRef]
- Haug, N.; Nechaev, S.K.; Tamm, M.V. From generalized directed animals to the asymmetric simple exclusion process. J. Stat. Mech. Theory Exp. 2014, P10013. [Google Scholar] [CrossRef]
- Tamm, M.V.; Dudka, M.; Pospelov, N.; Oshanin, G.; Nechaev, S. From steady-state TASEP model with open boundaries to 1D Ising model at negative fugacity. J. Stat. Mech. Theory Exp. 2022, 033201. [Google Scholar] [CrossRef]
- Kesten, H. Symmetric random walks on groups. Trans. Am. Math. Soc. 1959, 92, 336354. [Google Scholar] [CrossRef]
- McKay, B.D. The expected eigenvalue distribution of a large regular graph. Linear Algebra Its Appl. 1981, 40, 203216. [Google Scholar] [CrossRef]
- Kovaleva, V.; Maximov, Y.; Nechaev, S.; Valba, O. Peculiar spectral statistics of ensembles of trees and star-like graphs. J. Stat. Mech.: Theory Exp. 2017, 2017, 073402. [Google Scholar] [CrossRef]
- Mirlin, A.; Fyodorov, Y. Localization transition in the Anderson model on the Bethe lattice: Spontaneous symmetry breaking and correlation functions. Nucl. Phys. B 1991, 366, 507. [Google Scholar] [CrossRef]
- Mirlin, A.; Fyodorov, Y. Distribution of Local Densities of States, Order Parameter Function, and Critical Behavior near the Anderson Transition. Phys. Rev. Lett. 1994, 72, 526. [Google Scholar] [CrossRef] [PubMed]
- Evers, F.; Mirlin, A. Anderson transitions. Rev. Mod. Phys. 2008, 80, 1355. [Google Scholar] [CrossRef]
- Tikhonov, K.; Mirlin, A. Statistics of eigenstates near the localization transition on random regular graphs. Phys. Rev. B 2019, 99, 024202. [Google Scholar] [CrossRef]
- Tikhonov, K.; Mirlin, A. Critical behavior at the localization transition on random regular graphs. Phys. Rev. B 2019, 99, 214202. [Google Scholar] [CrossRef]
- Tikhonov, K.; Mirlin, A. From Anderson localization on Random Regular Graphs to Many-Body localization. Ann. Phys. 2021, 435, 168525. [Google Scholar] [CrossRef]
- Eigen, M.; McCaskill, J.; Schuster, P. The molecular quasispecies. Adv. Chem. Phys. 1989, 75, 149. [Google Scholar]
- Nowak, M.; Schuster, P. Error thresholds of replication in finite populations, mutation frequencies and the onset of Muller’s ratchet. J. Theretical Biol. 1989, 137, 375. [Google Scholar] [CrossRef] [PubMed]
- Bull, J.; Meyers, L.; Lachmann, M. Quasispecies Made Simple. PLoS Comput. Biol. 2005, 1, e61. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gulyaev, A.V.; Tamm, M.V. Path Counting on Tree-like Graphs with a Single Entropic Trap: Critical Behavior and Finite Size Effects. Entropy 2023, 25, 1318. https://doi.org/10.3390/e25091318
Gulyaev AV, Tamm MV. Path Counting on Tree-like Graphs with a Single Entropic Trap: Critical Behavior and Finite Size Effects. Entropy. 2023; 25(9):1318. https://doi.org/10.3390/e25091318
Chicago/Turabian StyleGulyaev, Alexey V., and Mikhail V. Tamm. 2023. "Path Counting on Tree-like Graphs with a Single Entropic Trap: Critical Behavior and Finite Size Effects" Entropy 25, no. 9: 1318. https://doi.org/10.3390/e25091318
APA StyleGulyaev, A. V., & Tamm, M. V. (2023). Path Counting on Tree-like Graphs with a Single Entropic Trap: Critical Behavior and Finite Size Effects. Entropy, 25(9), 1318. https://doi.org/10.3390/e25091318