# Fundamental Relation for Gas of Interacting Particles in a Heat Flow

^{1}

^{2}

^{3}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Van der Waals Gas in Equilibrium

## 3. Van der Waals Gas in a Heat Flow

## 4. Net Heat for van der Waals Gas and New Parameter of State

## 5. The Integrating Factor for Net Heat in the van der Waals Gas in Steady-States Does Not Exist

## 6. Global Steady Thermodynamics for van der Waals Gas with $\mathit{b}\ne \mathbf{0}$

## 7. Equations of State up to the Second Order in Average Density

## 8. Example of Maxwell Relations

## 9. Discussion

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Callen, H.B. Thermodynamics and an Introduction to Thermostatistics; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Müller, I. A History of Thermodynamics: The Doctrine of Energy and Entropy; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Daivis, P.J. Thermodynamic relationships for shearing linear viscoelastic fluids. J. Non-Newton. Fluid Mech.
**2008**, 152, 120–128. [Google Scholar] [CrossRef] - Jou, D. Relationships between rational extended thermodynamics and extended irreversible thermodynamics. Philos. Trans. R. Soc. A
**2020**, 378, 20190172. [Google Scholar] [CrossRef] [PubMed] - Groot, S.R.D.; Mazur, P. Non-Equilibrium Thermodynamics; Courier Corporation: New York, NY, USA, 2013. [Google Scholar]
- Woo, H.-J. Variational formulation of nonequilibrium thermodynamics for hydrodynamic pattern formations. Phys. Rev. E
**2002**, 66, 066104. [Google Scholar] [CrossRef] - Prigogine, I. Introduction to Thermodynamics of Irreversible Processes; Interscience Publishers: New York, NY, USA, 1967. [Google Scholar]
- Gyarmati, I. Non-Equilibrium Thermodynamics; Springer: Berlin/Heidelberg, Germany, 1970. [Google Scholar]
- Onsager, L. Reciprocal Relations in Irreversible Processes. I. Phys. Rev.
**1931**, 37, 405–426. [Google Scholar] [CrossRef] - Landauer, R. dQ=TdS ds far from equilibrium. Phys. Rev. A
**1978**, 18, 255. [Google Scholar] [CrossRef] - Maes, C.; Netočnỳ, K. Nonequilibrium calorimetry. J. Stat. Mech. Theory Exp.
**2019**, 2019, 114004. [Google Scholar] [CrossRef] - Daivis, P.J.; Matin, M.L. Steady-state thermodynamics of shearing linear viscoelastic fluids. J. Chem. Phys.
**2003**, 118, 11111–11119. [Google Scholar] [CrossRef] - Daivis, P.J.; Jou, D. Thermodynamic considerations on thermostats and maxwell relations in steady sheared fluids. Contin. Mech. Thermodyn.
**2012**, 24, 37–48. [Google Scholar] [CrossRef] - Komatsu, T.S.; Nakagawa, N.; Sasa, S.; Tasaki, H. Steady-state thermodynamics for heat conduction: Microscopic derivation. Phys. Rev. Lett.
**2008**, 100, 230602. [Google Scholar] [CrossRef] - Komatsu, T.S.; Nakagawa, N.; Sasa, S.; Tasaki, H. Entropy and nonlinear nonequilibrium thermodynamic relation for heat conducting steady-states. J. Stat. Phys.
**2011**, 142, 127–153. [Google Scholar] [CrossRef] - Maes, C.; Netočnỳ, K. A nonequilibrium extension of the clausius heat theorem. J. Stat. Phys.
**2014**, 154, 188–203. [Google Scholar] [CrossRef] - Nakagawa, N.; Sasa, S. Liquid-gas transitions in steady heat conduction. Phys. Rev. Lett.
**2017**, 119, 260602. [Google Scholar] [CrossRef] [PubMed] - Lieb, E.H.; Yngvason, J. The entropy concept for nonequilibrium states. Proc. R. Soc. A Math. Phys. Eng. Sci.
**2013**, 469, 20130408. [Google Scholar] - Jona-Lasinio, G. Thermodynamics of stationary states. J. Stat. Mech. Theory Exp.
**2014**, 2014, P02004. [Google Scholar] [CrossRef] - Oono, Y.; Paniconi, M. Steady state thermodynamics. Prog. Theor. Phys. Suppl.
**1998**, 130, 29–44. [Google Scholar] [CrossRef] - Nakagawa, N.; Sasa, S. Global thermodynamics for heat conduction systems. J. Stat. Phys.
**2019**, 177, 825–888. [Google Scholar] [CrossRef] - Chiba, Y.; Nakagawa, N. Numerical determination of entropy associated with excess heat in steady-state thermodynamics. Phys. Rev. E
**2016**, 94, 022115. [Google Scholar] [CrossRef] - Hołyst, R.; Makuch, K.; Maciołek, A.; Żuk, P.J. Thermodynamics of stationary states of the ideal gas in a heat flow. J. Chem. Phys.
**2022**, 157, 194108. [Google Scholar] [CrossRef] - Watanabe, S.; Imada, M. Precise determination of phase diagram for two-dimensional hubbard model with filling-and bandwidth-control mott transitions: Grand-canonical path-integral renormalization group approach. J. Phys. Soc. Jpn.
**2004**, 73, 1251–1266. [Google Scholar] [CrossRef] - Watanabe, S.; Imada, M. Thermodynamic relations in correlated systems. J. Phys. Soc. Jpn.
**2004**, 73, 3341–3350. [Google Scholar] [CrossRef] - Kim, H.C.; Kang, G. Equation of state in the presence of gravity. J. Korean Phys. Soc.
**2016**, 69, 1597–1602. [Google Scholar] [CrossRef] - Frenkel, D.; Smit, B. Understanding molecular simulation: From algorithms to applications. Comput. Sci. Ser.
**2002**, 1, 1–638. [Google Scholar] [CrossRef] - Crank, J. The Mathematics of Diffusion; Oxford University Press: London, UK, 1979. [Google Scholar]
- Yamamoto, T.; Nagae, Y.; Wakabayashi, T.; Kamiyama, T.; Suzuki, H. Calorimetry of phase transitions in liquid crystal 8cb under shear flow. Soft Matter
**2023**, 19, 1492–1498. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**The schematic of the van der Waals gas between parallel walls separated by a distance L. The walls are kept at temperatures of ${T}_{1}>{T}_{2}$, and the density of the spheres represents the variation of the gas density in the temperature gradient.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hołyst, R.; Makuch, K.; Giżyński, K.; Maciołek, A.; Żuk, P.J.
Fundamental Relation for Gas of Interacting Particles in a Heat Flow. *Entropy* **2023**, *25*, 1295.
https://doi.org/10.3390/e25091295

**AMA Style**

Hołyst R, Makuch K, Giżyński K, Maciołek A, Żuk PJ.
Fundamental Relation for Gas of Interacting Particles in a Heat Flow. *Entropy*. 2023; 25(9):1295.
https://doi.org/10.3390/e25091295

**Chicago/Turabian Style**

Hołyst, Robert, Karol Makuch, Konrad Giżyński, Anna Maciołek, and Paweł J. Żuk.
2023. "Fundamental Relation for Gas of Interacting Particles in a Heat Flow" *Entropy* 25, no. 9: 1295.
https://doi.org/10.3390/e25091295