A Pilot Study Using Entropy for Optimizing Self-Pacing during a Marathon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject
2.2. Experimental Design: RABIT® Test and the Marathon Race
2.3. Experimental Measurements
- RABIT® Test
- Marathon
2.4. Data Analysis
2.5. Statistical Analysis
- Shannon’s Entropy
- Global Tendency of Pace and Its Asymmetry
3. Results
3.1. Statistical Characteristics of the Variables throughout the Marathon (Speed, Heart Rate, and Stride Length)
3.2. Entropy on the Marathon
4. Discussion
5. Conclusions and Study Limitations
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Buman, M.P.; Brewer, B.W.; Cornelius, A.E.; Van Raalte, J.L.; Petitpas, A.P. Hitting the wall in the marathon: Phenomenological characteristics and associations with expectancy, gender, and running history. Psychol. Sport Exerc. 2008, 9, 177–190. [Google Scholar] [CrossRef]
- Breen, D.; Norris, M.; Healy, R.; Anderson, R. Marathon pace control in masters athletes. Int. J. Sport. Physiol. 2018, 13, 332–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billat, V.; Carbillet, T.; Correa, M.; Pycke, J.R. Detecting the marathon asymmetry with a statistical signature. Physica A 2019, 515, 240–247. [Google Scholar] [CrossRef]
- Billat, V.; Poinsard, L.; Palacin, F.; Pycke, J.R.; Maron, M. Oxygen uptake measurements and rate of perceived exertion during a marathon. Int. J. Environ. Res. Public Health 2022, 19, 5760. [Google Scholar] [CrossRef] [PubMed]
- Smyth, B.; Muniz-Pumares, D. Calculation of critical speed from training data in recreational marathon runners. Med. Sci. Sport. Exerc. 2020, 52, 2637–2645. [Google Scholar] [CrossRef] [PubMed]
- De Koning, J.J.; Foster, C.; Bakkum, A.; Kloppenburg, S.; Thiel, C. Regulation of pacing strategy during athletic competition. PLoS ONE 2011, 6, e15863. [Google Scholar] [CrossRef]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaing, IL, USA, 1998; p. 104. [Google Scholar]
- Ulmer, H.V. Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback. Experienta 1996, 52, 416–420. [Google Scholar] [CrossRef]
- Lambert, E.V.; St Clair Gibson, A.; Noakes, T.D. Complex system model of fatigue: Integrative homeostatic control of peripheral systems during exercise in humans. Br. J. Sport. 2005, 39, 52–62. [Google Scholar] [CrossRef] [Green Version]
- St Clair Gibson, A.; Lambert, E.V.; Rauch, L.H.G.; Tucker, R.; Baden, D.A. The role of information processing between the brain and peripheral physiological systems in pacing and perception of effort. Sport. Med. 2006, 36, 705–722. [Google Scholar] [CrossRef]
- Tucker, R.; Noakes, T.D. The physiological regulation of pacing strategy during exercise: A critical review. Br. J. Sport. Med. 2009, 43, e1. [Google Scholar] [CrossRef]
- Tucker, R. The anticipatory regulation of performance: The physiological basis for pacing strategies and the development of a perception based model for exercise performance. Br. J. Sport. Med. 2009, 43, 392–400. [Google Scholar] [CrossRef]
- Shannon, C.; Weaver, W. The mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- David, L.; Costill, D.L. A comparaison of two middle aged ultramarathon runners, research quarterly. Am. Assoc. Health Phys. Educ. 1970, 41, 135–139. [Google Scholar]
- Jones, A.M.; Kirby, B.S.; Clark, I.E.; Rice, H.M.; Fulkerson, E.; Wylie, L.J.; Wilkerson, D.P.; Vanhatalo, A.; Wilkins, B.W. Physiological demands of runnings at 2-hour marathon race pace. J. Appl. Physiol. 2021, 130, 369–379. [Google Scholar] [CrossRef]
- Joyner, J.R.; Hunter, S.K.; Lucia, A.; Jones, A.M. Physiology and fast marathons. J. Appl. Physiol. 2020, 128, 1065–1068. [Google Scholar] [CrossRef]
- Molinari, C.A.; Palacin, F.; Poinsard, L.; Billat, V. Determination of submaximal and maximal training zones from a 3-Stage, Variable-duration, perceptually regulated track test. Int. J. Sport. Physiol. Perform. 2020, 15, 853–861. [Google Scholar] [CrossRef]
- Giovanelli, N.; Scaini, S.; Billat, V.; Lazzer, S. A new field to estimate the aerobic and anaerobic thresholds and maximum parameters. Eur. J. Sport. Sci. 2020, 20, 437–443. [Google Scholar] [CrossRef]
- Kraft, G.L.; Roberts, R.A. Validation of the garmin forerunner 920XT fitness watch VO2peak test. IJIER 2017, 5, 63–69. [Google Scholar] [CrossRef]
- Perez-Suarez, I.; Martin-Rincon, M.; Gonzales-Henriquez, J.J.; Fezzardi, C.; Perez-Regalado, S.; Galvan-Alvarez, V.; Calbet, J.A. Accuracy and precision of the cosmed K5 portable analyser. Front. Physiol. 2018, 9, 1764. [Google Scholar] [CrossRef]
- Pycke, J.R.; Billat, V. Marathon performance depends on pacing oscillations between non symmetric extreme values. Int. J. Environ. Res. Public Health 2022, 19, 2463. [Google Scholar] [CrossRef]
- Namazi, H.; Krejcar, O.; Subasi, A. Complexity and information-based analysis of the variations of the SARS-CoV-2 genome in the United States of America. Fractals 2020, 28, 2150023. [Google Scholar] [CrossRef]
- Costa, M.; Ary, L.; Peng, C.K. Multisale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 2002, 89, 068102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kendall, M.G.; Stuart, A. The Advance Theory of Statistics; Griffin and Co.: London, UK, 1963. [Google Scholar]
- Haney JR, T.; Mercer, J.A. A description of variability of pacing in marathon distance running. Int. J. Exerc. Sci. 2011, 4, 133–140. [Google Scholar] [PubMed]
- Goldberger, A.L.; Peng, C.K.; Lipsitz, L.A. What is physiologic complexity and how does it change with aging and disease? Neurobiol. Aging 2022, 23, 23–26. [Google Scholar] [CrossRef]
- Nikolaidis, P.T.; Cuk, I.; Rosemann, T.; Knechtle, B. Performance and Pacing of Age Groups in Half-Marathon and Marathon. Medicina 2021, 57, 389. [Google Scholar] [CrossRef] [Green Version]
- Berndsen, J.; Lawlor, A.; Smyth, B. Exploring the wall in marathon running. J. Sport. Anal. 2020, 6, 173–186. [Google Scholar] [CrossRef]
- Gonzalez-Alonso, J.; Warburton, D.E.R.; Gledhill, N. “Point: Counterpoint: Stroke volume does not decline during exercice at maximal effort in healthy individuals”. J. Appl. Physiol. 2008, 104, 275–280. [Google Scholar] [CrossRef]
- Billat, V.; Palacin, F.; Correa, M.; Pycke, J.R. Pacing strategy affects the sub-elite marathoner’s cardiac drift and performance. Front. Psychol. 2020, 10, 3026. [Google Scholar] [CrossRef] [Green Version]
- Noakes, T.D.; St Clair Gibson, A.; Lambert, E.V. From catastrophe to complexity: A novel model of integrative central neural regulation of effort and fatigue during exercise in humans. Br. J. Sport. Med. 2005, 39, 120–124. [Google Scholar] [CrossRef] [Green Version]
- Gibson, A.S.; Baden, D.A.; Lambert, M.I. The conscious perception of the sensation of fatigue. Sport. Med. 2003, 33, 167–176. [Google Scholar] [CrossRef]
- Billat, V.; Palacin, F.; Poinsard, L.; Edwards, J.; Maron, M. Heart rate does not reflect the %VO2max in recreational runners during the marathon. Int. J. Environ. Res. Public Health 2022, 19, 12451. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological time-series Analysis using approximate entropy and sample entropy. Am. J. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [Green Version]
- Alexander, R.M. Stride length and speed for adults, children, and fossil hominids. Am. J. Phys. Anthropol. 1984, 63, 23–27. [Google Scholar] [CrossRef]
- Slawinski, J.S.; Billat, V. Difference in mechanical and energy cost between highly, well, and nontrained runners. Med. Sci. Sport. Exerc. 2004, 36, 1440–1446. [Google Scholar] [CrossRef]
- Nicol, C.; Komi, P.V.; Marconnet, P. Effects of marathon fatigue on running kinematics and economy. Scand. J. Med. Sci. Sport. 1991, 1, 195–204. [Google Scholar] [CrossRef]
- Murray, A.M.; Ryu, J.H.; Sproule, J.; Turner, A.P.; Graham-smith, P.; Cardinale, M. A pilot study using entropy as a noninvasive assessment of running. IJSPP 2017, 12, 1119–1122. [Google Scholar] [CrossRef] [Green Version]
Runners id | Age (Years) | Fastest Marathon Time (Years) | Lake Annecy Marathon (2019) |
---|---|---|---|
1 | 34 | 02 h 55′03″ (2018) | 02 h 50′00″ * |
2 | 33 | 02 h 53′43″ (2017) | 02 h 51′36″ * |
3 | 23 | 03 h 10′12″ (2019) | 03 h 21′40″ |
4 | 42 | 03 h 32′23″ (2018) | 03 h 31′27″ * |
5 | 44 | 03 h 35′59″ (2017) | 03 h 31′34″ * |
6 | 47 | 03 h 12′46″ (2018) | 03 h 32′58″ |
States | Speed | HR | Stride Length |
---|---|---|---|
1 | x < 12.4 | x < 145 | x < 1.10 |
2 | 12.4 ≥ x < 12.9 | 145 ≥ x < 150 | 1.10 ≥ x < 1.15 |
3 | 12.9 ≥ x < 13.6 | 150 ≥ x < 154 | 1.15 ≥ x < 1.21 |
4 | 13.6 ≥ x < 14.2 | 154 ≥ x < 161 | 1.21 ≥ x < 1.36 |
5 | 14.2 ≥ x < 14.8 | 161 ≥ x < 164 | 1.36 ≥ x < 1.41 |
6 | 14.8 ≥ x < 16.5 | 164 ≥ x < 167 | 1.41 ≥ x < 1.52 |
7 | 16.5 ≥ x < 16.8 | 167 ≥ x < 170 | 1.52 ≥ x < 1.62 |
8 | 16.8 ≥ x < 17.3 | 170 ≥ x < 176 | 1.62 ≥ x < 1.71 |
9 | x ≥ 17.3 | x ≥ 176 | x ≥ 1.71 |
Runners id | Marathon Time | Speed | HR | SL | |
---|---|---|---|---|---|
1 | 2 h 50 min 00 s | Mean | 14.9 | 146 | 1.5 |
SD | 0.6 | 9 | 0.2 | ||
Coefficient of variation | 4.3% | 6.4% | 13% | ||
2 | 2 h 51 min 36 s | Mean | 14.8 | 150 | 1.5 |
SD | 1.8 | 6 | 0.1 | ||
Coefficient of variation | 5.1% | 3.7% | 12% | ||
3 | 3 h 21 min 40 s | Mean | 12.5 | 159 | 1.1 |
SD | 0.8 | 5 | 0.1 | ||
Coefficient of variation | 6.9% | 3.5% | 7.7% | ||
4 | 3 h 31 min 27 s | Mean | 12.1 | 149 | 1.4 |
SD | 1.3 | 7 | 0.2 | ||
Coefficient of variation | 6.7% | 4.6% | 16% | ||
5 | 3 h 31 min 34 s | Mean | 12.0 | 167 | 1.2 |
SD | 0.7 | 6 | 0.1 | ||
Coefficient of variation | 5.8% | 2.8% | 11.3% | ||
6 | 3 h 32 min 58 s | Mean | 11.9 | 159 | 1.2 |
SD | 0.9 | 5 | 0.1 | ||
Coefficient of variation | 7.5% | 3.3% | 7.7% |
Runners id | Speed | HR | Stride Length | |
---|---|---|---|---|
1 | Kendall Tau | −0.456 | 0.506 | −0.464 |
p-value | 0.001 | 0.001 | 0.001 | |
SK Pearson | −0.555 | −0.193 | −0.584 | |
2 | Kendall Tau | −0.577 | 0.417 | −0.400 |
p-value | 0.001 | 0.001 | 0.001 | |
SK Pearson | −0.534 | −0.956 | −0.101 | |
3 | Kendall Tau | −0.462 | 0.381 | −0.357 |
p-value | 0.001 | 0.001 | 0.001 | |
SK Pearson | −0.160 | −1.443 | 0.278 | |
4 | Kendall Tau | −0.306 | 0.374 | −0.390 |
p-value | 0.001 | 0.001 | 0.001 | |
SK Pearson | −0.551 | −0.983 | −0.797 | |
5 | Kendall Tau | −0.610 | 0.385 | −0.466 |
p-value | 0.001 | 0.001 | 0.001 | |
SK Pearson | −0.190 | −0.644 | −0.27 | |
6 | Kendall Tau | −0.632 | 0.126 | −0.513 |
p-value | 0.001 | 0.001 | 0.001 | |
SK Pearson | −0.695 | −1.566 | −1.161 |
Runners id | Entropy Speed | Entropy HR | Entropy Stride Length | |
---|---|---|---|---|
1 | Mean | 1.22 | 1.18 | 1.44 |
Standard deviation | 0.47 | 0.51 | 0.48 | |
2 | Mean | 0.77 | 0.57 | 1.60 |
Standard deviation | 0.60 | 0.38 | 0.30 | |
3 | Mean | 0.81 | 0.65 | 1.33 |
Standard deviation | 0.65 | 0.56 | 0.60 | |
4 | Mean | 0.81 | 0.50 | 1.32 |
Standard deviation | 0.58 | 0.47 | 0.54 | |
5 | Mean | 0.23 | 0.23 | 0.96 |
Standard deviation | 0.43 | 0.43 | 0.75 | |
6 | Mean | 1.06 | 0.23 | 1.16 |
Standard deviation | 0.57 | 0.42 | 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palacin, F.; Poinsard, L.; Pycke, J.R.; Billat, V. A Pilot Study Using Entropy for Optimizing Self-Pacing during a Marathon. Entropy 2023, 25, 1119. https://doi.org/10.3390/e25081119
Palacin F, Poinsard L, Pycke JR, Billat V. A Pilot Study Using Entropy for Optimizing Self-Pacing during a Marathon. Entropy. 2023; 25(8):1119. https://doi.org/10.3390/e25081119
Chicago/Turabian StylePalacin, Florent, Luc Poinsard, Jean Renaud Pycke, and Véronique Billat. 2023. "A Pilot Study Using Entropy for Optimizing Self-Pacing during a Marathon" Entropy 25, no. 8: 1119. https://doi.org/10.3390/e25081119
APA StylePalacin, F., Poinsard, L., Pycke, J. R., & Billat, V. (2023). A Pilot Study Using Entropy for Optimizing Self-Pacing during a Marathon. Entropy, 25(8), 1119. https://doi.org/10.3390/e25081119