Energy-Constrained LOCC-Assisted Quantum Capacity of the Bosonic Dephasing Channel
Abstract
1. Introduction
2. Background and Notation
2.1. Notation
2.2. Squashed Entanglement
2.3. Two-Way LOCC-Assisted Quantum Capacity
2.4. Symmetric Channels
2.5. Quantum Dephasing Channel
3. Optimal Input State
4. Squashing Channel for Bosonic Dephasing Channel
4.1. 50/50 Beamsplitter Squashing Channel
4.2. Qubit Squashing Channels
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. On the Equality of Quantum Capacity and Reverse Coherent Information for a Bosonic Dephasing Channel
Appendix B. Bounding the Errors Due to Space Trucation
References
- Eisert, J.; Wolf, M.M. Gaussian Quantum Channels. arXiv 2005, arXiv:quant-ph/0505151. [Google Scholar]
- Serafini, A. Quantum Continuous Variables: A Primer of Theoretical Methods; Taylor & Francis: Milton Park, UK, 2017. [Google Scholar] [CrossRef]
- Holevo, A.S.; Werner, R.F. Evaluating capacities of bosonic Gaussian channels. Phys. Rev. A 2001, 63, 032312. [Google Scholar] [CrossRef]
- Harrington, J.; Preskill, J. Achievable rates for the Gaussian quantum channel. Phys. Rev. A 2001, 64, 062301. [Google Scholar] [CrossRef]
- Giovannetti, V.; Guha, S.; Lloyd, S.; Maccone, L.; Shapiro, J.H.; Yuen, H.P. Classical Capacity of the Lossy Bosonic Channel: The Exact Solution. Phys. Rev. Lett. 2004, 92, 027902. [Google Scholar] [CrossRef]
- Caves, C.M.; Wodkiewicz, K. Fidelity of Gaussian Channels. arXiv 2004, arXiv:quant-ph/0409063. [Google Scholar] [CrossRef]
- Adesso, G.; Dell’Anno, F.; De Siena, S.; Illuminati, F.; Souza, L.A.M. Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states. Phys. Rev. A 2009, 79, 040305. [Google Scholar] [CrossRef]
- Opatrný, T.; Kurizki, G.; Welsch, D.G. Improvement on teleportation of continuous variables by photon subtraction via conditional measurement. Phys. Rev. A 2000, 61, 032302. [Google Scholar] [CrossRef]
- Mišta, L. Minimal disturbance measurement for coherent states is non-Gaussian. Phys. Rev. A 2006, 73, 032335. [Google Scholar] [CrossRef]
- Olivares, S.; Paris, M.G.A.; Bonifacio, R. Teleportation improvement by inconclusive photon subtraction. Phys. Rev. A 2003, 67, 032314. [Google Scholar] [CrossRef]
- Eisert, J.; Scheel, S.; Plenio, M.B. Distilling Gaussian States with Gaussian Operations is Impossible. Phys. Rev. Lett. 2002, 89, 137903. [Google Scholar] [CrossRef]
- Fiurášek, J. Gaussian Transformations and Distillation of Entangled Gaussian States. Phys. Rev. Lett. 2002, 89, 137904. [Google Scholar] [CrossRef] [PubMed]
- Fiurášek, J. Improving the fidelity of continuous-variable teleportation via local operations. Phys. Rev. A 2002, 66, 012304. [Google Scholar] [CrossRef]
- Giedke, G.; Ignacio Cirac, J. Characterization of Gaussian operations and distillation of Gaussian states. Phys. Rev. A 2002, 66, 032316. [Google Scholar] [CrossRef]
- Niset, J.; Fiurášek, J.; Cerf, N.J. No-Go Theorem for Gaussian Quantum Error Correction. Phys. Rev. Lett. 2009, 102, 120501. [Google Scholar] [CrossRef] [PubMed]
- Namiki, R.; Gittsovich, O.; Guha, S.; Lütkenhaus, N. Gaussian-only regenerative stations cannot act as quantum repeaters. Phys. Rev. A 2014, 90, 062316. [Google Scholar] [CrossRef]
- Devetak, I. The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. Inf. Theory 2005, 51, 44–55. [Google Scholar] [CrossRef]
- Memarzadeh, L.; Mancini, S. Minimum output entropy of a non-Gaussian quantum channel. Phys. Rev. A 2016, 94, 022341. [Google Scholar] [CrossRef]
- Sabapathy, K.K.; Winter, A. Non-Gaussian operations on bosonic modes of light: Photon-added Gaussian channels. Phys. Rev. A 2017, 95, 062309. [Google Scholar] [CrossRef]
- Arqand, A.; Memarzadeh, L.; Mancini, S. Quantum capacity of a bosonic dephasing channel. Phys. Rev. A 2020, 102, 042413. [Google Scholar] [CrossRef]
- Lami, L.; Plenio, M.B.; Giovannetti, V.; Holevo, A.S. Bosonic Quantum Communication across Arbitrarily High Loss Channels. Phys. Rev. Lett. 2020, 125, 110504. [Google Scholar] [CrossRef]
- Dehdashti, S.; Notzel, J.; van Loock, P. Quantum capacity of a deformed bosonic dephasing channel. arXiv 2022, arXiv:2211.09012. [Google Scholar] [CrossRef]
- Lami, L.; Wilde, M.M. Exact solution for the quantum and private capacities of bosonic dephasing channels. Nat. Photonics 2023, 17, 525–530. [Google Scholar] [CrossRef]
- Jiang, L.-Z.; Chen, X.-Y. Evaluating the quantum capacity of bosonic dephasing channel. In Quantum and Nonlinear Optics; SPIE: Bellingham, WA, USA, 2010; Volume 7846, pp. 244–249. [Google Scholar] [CrossRef]
- Gordon, J.P.; Mollenauer, L.F. Phase noise in photonic communications systems using linear amplifiers. Opt. Lett. 1990, 15, 1351–1353. [Google Scholar] [CrossRef] [PubMed]
- Derickson, D.J. Fiber Optic Test and Measurement; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Kimble, H.J. The quantum internet. Nature 2008, 453, 1023–1030. [Google Scholar] [CrossRef]
- Takeoka, M.; Guha, S.; Wilde, M.M. The Squashed Entanglement of a Quantum Channel. IEEE Trans. Inf. Theory 2014, 60, 4987–4998. [Google Scholar] [CrossRef]
- Davis, N.; Shirokov, M.E.; Wilde, M.M. Energy-constrained two-way assisted private and quantum capacities of quantum channels. Phys. Rev. A 2018, 97, 062310. [Google Scholar] [CrossRef]
- Wilde, M.M. Quantum Information Theory; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar] [CrossRef]
- Khatri, S.; Wilde, M.M. Principles of Quantum Communication Theory: A Modern Approach. arXiv 2020, arXiv:2011.04672. [Google Scholar]
- Lieb, E.H.; Ruskai, M.B. A Fundamental Property of Quantum-Mechanical Entropy. Phys. Rev. Lett. 1973, 30, 434–436. [Google Scholar] [CrossRef]
- Lieb, E.H.; Ruskai, M.B. Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 1973, 14, 1938–1941. [Google Scholar] [CrossRef]
- Christandl, M.; Winter, A. “Squashed entanglement”: An additive entanglement measure. J. Math. Phys. 2004, 45, 829–840. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G.; Popescu, S.; Schumacher, B.; Smolin, J.A.; Wootters, W.K. Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels. Phys. Rev. Lett. 1996, 76, 722–725. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.H.; DiVincenzo, D.P.; Smolin, J.A.; Wootters, W.K. Mixed-state entanglement and quantum error correction. Phys. Rev. A 1996, 54, 3824–3851. [Google Scholar] [CrossRef]
- Smith, G.; Smolin, J.A.; Winter, A. The Quantum Capacity with Symmetric Side Channels. IEEE Trans. Inf. Theory 2008, 54, 4208–4217. [Google Scholar] [CrossRef]
- Winter, A. “Pretty strong” converse for the private capacity of degraded quantum wiretap channels. In Proceedings of the 2016 IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, 10–15 July 2016; pp. 2858–2862. [Google Scholar] [CrossRef]
- Walls, D.F.; Milburn, G.J. (Eds.) Quantum Optics, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Das, S.; Bäuml, S.; Wilde, M.M. Entanglement and secret-key-agreement capacities of bipartite quantum interactions and read-only memory devices. Phys. Rev. A 2020, 101, 012344. [Google Scholar] [CrossRef]
- Ivan, J.S.; Sabapathy, K.K.; Simon, R. Operator-sum representation for bosonic Gaussian channels. Phys. Rev. A 2011, 84, 042311. [Google Scholar] [CrossRef]
- García-Patrón, R.; Pirandola, S.; Lloyd, S.; Shapiro, J.H. Reverse Coherent Information. Phys. Rev. Lett. 2009, 102, 210501. [Google Scholar] [CrossRef] [PubMed]
- Horodecki, M.; Horodecki, P.; Horodecki, R. Unified Approach to Quantum Capacities: Towards Quantum Noisy Coding Theorem. Phys. Rev. Lett. 2000, 85, 433–436. [Google Scholar] [CrossRef]
- Devetak, I.; Winter, A. Distillation of secret key and entanglement from quantum states. Proc. R. Soc. A Math. Phys. Eng. Sci. 2005, 461, 207–235. [Google Scholar] [CrossRef]
- Devetak, I.; Junge, M.; King, C.; Ruskai, M.B. Multiplicativity of Completely Bounded p-Norms Implies a New Additivity Result. Commun. Math. Phys. 2006, 266, 37–63. [Google Scholar] [CrossRef]
- Khatri, S.; Sharma, K.; Wilde, M.M. Information-theoretic aspects of the generalized amplitude-damping channel. Phys. Rev. A 2020, 102, 012401. [Google Scholar] [CrossRef]
- Smaczyński, M.; Roga, W.; Życzkowski, K. Selfcomplementary Quantum Channels. Open Syst. Inf. Dyn. 2016, 23, 1650014. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arqand, A.; Memarzadeh, L.; Mancini, S. Energy-Constrained LOCC-Assisted Quantum Capacity of the Bosonic Dephasing Channel. Entropy 2023, 25, 1001. https://doi.org/10.3390/e25071001
Arqand A, Memarzadeh L, Mancini S. Energy-Constrained LOCC-Assisted Quantum Capacity of the Bosonic Dephasing Channel. Entropy. 2023; 25(7):1001. https://doi.org/10.3390/e25071001
Chicago/Turabian StyleArqand, Amir, Laleh Memarzadeh, and Stefano Mancini. 2023. "Energy-Constrained LOCC-Assisted Quantum Capacity of the Bosonic Dephasing Channel" Entropy 25, no. 7: 1001. https://doi.org/10.3390/e25071001
APA StyleArqand, A., Memarzadeh, L., & Mancini, S. (2023). Energy-Constrained LOCC-Assisted Quantum Capacity of the Bosonic Dephasing Channel. Entropy, 25(7), 1001. https://doi.org/10.3390/e25071001