On the Secure Performance of Intelligent Reflecting Surface-Assisted HARQ Systems
Abstract
:1. Introduction
- Closed-form expressions for COP and SOP are derived in IRS-assisted HARQ-CC systems while considering the differences in received SNR between the main channel and the wiretap channel. These two SNR distributions can be accurately approximated by the sum of KG distributed random variables (RVs) with varying parameters.
- Closed-form expressions for COP and SOP in IRS-assisted HARQ-IR systems are derived with the stated differences in received SNR. The mixture gamma (MG) distribution and the Mellin transform are then required to efficiently solve this problem, owing to the computing complexity of IR.
- Diversity gain and coding gain in the main channel and wiretap channel are then derived via COP/SOP and their asymptotic values using a series expansion of Meijer’s G-function.
- Numerical results verify the accuracy of our derivations and confirm that the amounts of meta-surfaces and the maximum transmission number have varying influence on COP and SOP for HARQ-CC and HARQ-IR.
2. System Model for IRS-Assisted Secure HARQ Transmissions
2.1. System Model
2.2. Secure Transmissions without HARQ
3. Outage Probability of IRS-Assisted Secure HARQ
3.1. OP of IRS-Assisted Secure HARQ-CC
3.2. OP of IRS-Assisted Secure HARQ-IR
4. Analysis of Diversity and Coding Gain
4.1. Gain of IRS-Assisted Secure HARQ-CC
4.2. Gain of IRS-Assisted Secure HARQ-IR
5. Numerical Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Appendix A. The Inverse Mellin Transform of
Appendix B. The Asymptotic Series Expansion of Meijer’s G-Function at
References
- Wu, Q.; Zhang, R. Towards Smart and Reconfigurable Environment: Intelligent Reflecting Surface Aided Wireless Network. IEEE Commun. Mag. 2020, 58, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Di Renzo, M.; Zappone, A.; Debbah, M.; Alouini, M.-S.; Yuen, C.; De Rosny, J.; Tretyakov, S. Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How It Works, State of Research, and The Road Ahead. IEEE J. Sel. Areas Commun. 2020, 38, 2450–2525. [Google Scholar] [CrossRef]
- Yu, X.; Xu, D.; Schober, R. Enabling secure wireless communications via intelligent reflecting surfaces. In Proceeding of the IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019. [Google Scholar]
- Hong, S.; Pan, C.; Ren, H.; Chai, K.; Nallanathan, A. Robust transmission design for intelligent reflecting surface-aided secure communication systems with imperfect cascaded CSI. IEEE Trans. Wirel. Commun. 2021, 20, 2487–2501. [Google Scholar] [CrossRef]
- Zhou, G.; Pan, C.; Ren, H.; Wang, K.; Nallanathan, A. Framework of Robust Transmission Design for IRS-Aided MISO Communications with Imperfect Cascaded Channels. IEEE Trans. Signal Process. 2020, 68, 5092–5106. [Google Scholar] [CrossRef]
- Barar, E.; Di Renzo, M.; De Rosny, J.; Debbah, M.; Alouini, M.-S.; Zhang, R. Wireless communications through reconfigurable intelligent surfaces. IEEE Access 2019, 7, 116753–1167736. [Google Scholar]
- Yang, L.; Meng, F.; Wu, Q.; Da Costa, D.; Alouini, M.-S. Accurate closed-form approximations to channel distributions of RIS-aided wireless systems. IEEE Wirel. Commun. Lett. 2020, 9, 1985–1989. [Google Scholar] [CrossRef]
- Zhang, H.; Di, B.; Song, L.; Han, Z. Reconfigurable intelligent surfaces assisted communications with limited phase shifts: How many phase shifts are enough? IEEE Trans. Veh. Technol. 2020, 69, 4498–4502. [Google Scholar] [CrossRef] [Green Version]
- Atapattu, S.; Fan, R.; Dharmawansa, P.; Wang, G.; Evans, J.; Tsiftsis, T.A. Reconfigurable intelligent surface assisted two–way communications: Performance analysis and optimization. IEEE Trans. Commun. 2020, 68, 6552–6567. [Google Scholar] [CrossRef]
- Boulogeorgos, A.-A.A.; Alexiou, A. Performance analysis of reconfigurable intelligent surface-assisted wireless systems and comparison with relaying. IEEE Access 2020, 8, 94463–94483. [Google Scholar] [CrossRef]
- Huang, C.; Zappone, A.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans. Wirel. Commun. 2019, 18, 4157–4170. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Liang, Y.C.; Chen, J.; Larsson, E.G. Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks. IEEE Trans. Wirel. Commun. 2020, 19, 3064–3076. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhang, S.; Zhang, R. IRS-enhanced OFDMA: Joint resource allocation and passive beamforming optimization. IEEE Commun. Lett. 2020, 9, 760–764. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yin, H.; Zhang, T.; Yang, W.; Shang, X.; Shen, Y. Secure Transmission for Energy-Harvesting Sensor Networks with a Buffer-Aided Sink Node. IEEE Internet Things J. 2022, 9, 6703–6718. [Google Scholar] [CrossRef]
- Diao, D.; Wang, B.; Cao, K.; Dong, R.; Cheng, T. Enhancing Reliability and Security of UAV-Enabled NOMA Communications with Power Allocation and Aerial Jamming. IEEE Trans. Veh. Technol. 2022, 8, 8662–8674. [Google Scholar] [CrossRef]
- Yang, L.; Yang, J.; Xie, W.; Hasna, M.O.; Tsiftsis, T.; Di Renzo, M. Secrecy performance analysis of RIS-aided wireless communication systems. IEEE Trans. Veh. Technol. 2020, 69, 12296–12300. [Google Scholar] [CrossRef]
- Khoshafa, M.H.; Ngatched, T.M.N.; Ahmed, M.H. Reconfigurable intelligent surfaces-aided physical layer security enhancement in D2D underlay communications. IEEE Commun. Lett. 2020, 25, 1443–1447. [Google Scholar] [CrossRef]
- Shen, H.; Xu, W.; Gong, S.; He, Z.; Zhao, C. Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications. IEEE Commun. Lett. 2019, 23, 1488–1492. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.; Zhang, G.; Zhang, R. Secure wireless communication via intelligent reflecting surface. IEEE Commun. Lett. 2019, 8, 1410–1414. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Pan, C.; Ren, H.; Wang, K.; Nallanathan, A. Artificial-noise-aided secure MIMO wireless communications via intelligent reflecting surface. IEEE Trans. Commun. 2020, 68, 7851–7866. [Google Scholar] [CrossRef]
- Tsoulos, I.G.; Stavrou, V.; Mastorakis, N.E.; Tsalikakis, D. GenConstraint: A programming tool for constraint optimization problems. SoftwareX 2019, 10, 100355. [Google Scholar] [CrossRef]
- Yu, X.; Xu, D.; Sun, Y.; Ng, D.W.K.; Schobe, R. Robust and Secure Wireless Communications via Intelligent Reflecting Surfaces. IEEE J. Sel. Areas Commun. 2020, 38, 2637–2652. [Google Scholar] [CrossRef]
- Wang, H.M.; Bai, J.; Dong, L. Intelligent Reflecting Surfaces Assisted Secure Transmission without Eavesdropper’s CSI. IEEE Signal Process. Lett. 2020, 27, 1300–1304. [Google Scholar] [CrossRef]
- Gu, X.; Duan, W.; Zhang, G.; Sun, Q.; Wen, M.; Ho, P.H. Physical Layer Security for RIS-Aided Wireless Communications with Uncertain Eavesdropper Distributions. IEEE Syst. J. 2022, 17, 848–859. [Google Scholar] [CrossRef]
- Chelli, A.; Zedini, E.; Alouini, M.-S.; Barry, J.R.; Patzold, M. Performance and Delay Analysis of Hybrid ARQ with Incremental Redundancy Over Double Rayleigh Fading Channels. IEEE Trans. Wirel. Commun. 2014, 13, 6245–6258. [Google Scholar] [CrossRef]
- Shi, Z.; Ma, S.; Yang, G.; Tam, K.-W.; Xia, M. Asymptotic Outage Analysis of HARQ-IR Over Time-Correlated Nakagami- m Fading Channels. IEEE Trans. Wirel. Commun. 2017, 16, 6119–6134. [Google Scholar] [CrossRef] [Green Version]
- Zedini, E.; Chelli, A.; Alouini, M.-S. On the Performance Analysis of Hybrid ARQ with Incremental Redundancy and with Code Combining Over Free-Space Optical Channels with Pointing Errors. IEEE Photon. J. 2014, 6, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Liu, R.; Spasojevic, P.; Poor, H.V. On the throughput of secure hybrid-ARQ protocols for Gaussian block-fading channels. IEEE Trans. Inf. Theory 2009, 55, 1575–1591. [Google Scholar] [CrossRef] [Green Version]
- Mheich, Z.; Treust, M.L.; Alberge, F.; Duhamel, P. Rate Adaptation for Incremental Redundancy Secure HARQ. IEEE Trans. Commun. 2016, 64, 765–777. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.; Cai, Y.; Yang, W. On the Reliability-Security Tradeoff and Secrecy Throughput in Cooperative ARQ. IEEE Commun. Lett. 2014, 18, 479–482. [Google Scholar] [CrossRef]
- Wu, Y.; Yin, S.; Zhou, J.; Yang, P.; Yang, H. Quasi-concave optimization of secrecy redundancy rate in HARQ-CC system. Sci. China Inf. Sci. 2020, 63, 122303. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Yin, S.; Zhou, J.; Yang, P.; Yang, H. Rate Adaption for Secure HARQ-CC System with Multiple Eavesdroppers. Entropy 2020, 22, 403. [Google Scholar] [CrossRef] [Green Version]
- Park, S. Kalman Combining Based Iterative Detection and Decoding for MIMO Systems with Hybrid ARQ. IEEE Trans. Veh. Technol. 2023, 2, 2040–2050. [Google Scholar] [CrossRef]
- Wu, S.; Deng, Z.; Li, A.; Jiao, J.; Zhang, N.; Zhang, Q. Minimizing Age-of-Information in HARQ-CC Aided NOMA Systems. IEEE Trans. Wirel. Commun. 2023, 2, 1072–1086. [Google Scholar] [CrossRef]
- Cao, Q.; Zhang, H.; Wang, H.; Fu, Y.; Yang, G.; Ma, S. Outage Performance Analysis of HARQ-Aided Multi-RIS Systems. In Proceeding of IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 6th ed.; Academic: New York, NY, USA, 2000. [Google Scholar]
- Wyner, A.D. The wire-tap channel. Bell. Sys. Tech. J. 1975, 54, 1355–1387. [Google Scholar] [CrossRef]
- Bjornson, E.; Sanguinetti, L. Power Scaling Laws and Near-Field Behaviors of Massive MIMO and Intelligent Reflecting Surfaces. IEEE Open J. Commun. Soc. 2020, 1, 1306–1324. [Google Scholar] [CrossRef]
- Peppas, K.P. Accurate closed-form approximations to generalised-K sum distributions and applications in the performance analysis of equal-gain combining receivers. IET Commun. 2011, 5, 982–989. [Google Scholar] [CrossRef]
- Liu, H.; Ding, H.; Xiang, L.; Yuan, J.; Zhang, L. Outage and BER Performance Analysis of Cascade Channel in Relay Networks. Procedia Comput. Sci. 2014, 34, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Chatzidiamantis, N.D.; Karagiannidis, G.K. On the Distribution of the Sum of Gamma-Gamma Variates and Applications in RF and Optical Wireless Communications. IEEE Trans. Commun. 2011, 59, 1298–1308. [Google Scholar] [CrossRef] [Green Version]
- Atapattus, S.; Tellambura, C.; Jiang, H. A Mixture Gamma Distribution to Model the SNR of Wireless Channels. IEEE Trans. Wirel. Commun. 2011, 10, 4193–4203. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables; Dover Publications: Garden City, NY, USA, 1965. [Google Scholar]
- Debnath, L.; Bhatta, D. Integral Transforms and Their Applications; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Yilmaz, F.; Alouini, M.-S. Outage capacity of multicarrier systems. In Proceeding of the IEEE International Conference on Telecommunications (ICT), Doha, Qatar, 4–7 April 2010. [Google Scholar]
- Wang, Z.; Giannakis, G.B. A simple and general parameterization quantifying performance in fading channels. IEEE Trans. Commun. 2003, 51, 1389–1398. [Google Scholar] [CrossRef] [Green Version]
- Trigui, I.; Laourine, A.; Affes, S.; Stephenne, A. On the performance of cascaded generalized k fading channels. In Proceeding of the IEEE Global Telecommunications Conference (GLOBECOM), Honolulu, HI, USA, 30 November–4 December 2009. [Google Scholar]
- Wolfram Research, I. Mathematica Edition: Version 8.0; Wolfram Res.: Champaign, IL, USA, 2010. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Mu, K.; Duan, K.; Yin, S.; Yang, H. On the Secure Performance of Intelligent Reflecting Surface-Assisted HARQ Systems. Entropy 2023, 25, 519. https://doi.org/10.3390/e25030519
Wu Y, Mu K, Duan K, Yin S, Yang H. On the Secure Performance of Intelligent Reflecting Surface-Assisted HARQ Systems. Entropy. 2023; 25(3):519. https://doi.org/10.3390/e25030519
Chicago/Turabian StyleWu, Yue, Kuanlin Mu, Kaiyu Duan, Shishu Yin, and Hongwen Yang. 2023. "On the Secure Performance of Intelligent Reflecting Surface-Assisted HARQ Systems" Entropy 25, no. 3: 519. https://doi.org/10.3390/e25030519
APA StyleWu, Y., Mu, K., Duan, K., Yin, S., & Yang, H. (2023). On the Secure Performance of Intelligent Reflecting Surface-Assisted HARQ Systems. Entropy, 25(3), 519. https://doi.org/10.3390/e25030519