Stochastic Thermodynamics of a Finite Quantum System Coupled to Two Heat Baths
Abstract
1. Introduction
2. Basic Definitions
3. Direction of Heat and Entropy Flow
3.1. General Fluctuation Theorem
3.2. Jarzynski Equation
3.3. Fluctuation Theorem and Direction of Heat and Entropy Flow
4. Analytical Examples
4.1. Analytical Example I: Partial Thermalization
4.2. Analytical Example II: Modified Jaynes–Cummings Model
5. The Linear Regime
6. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lebowitz, J.L.; Spohn, H. Transport properties of the Lorentz gas: Fourier’s law. J. Stat. Phy. 1978, 19, 633–654. [Google Scholar] [CrossRef]
- Spohn, H.; Lebowitz, J.L. Irreversible Thermodynamics for Quantum Systems Weakly Coupled to Thermal Reservoirs. In Advances in Chemical Physics: For Ilya Prigogine; Rice, S.A., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 1987; Volume 38. [Google Scholar]
- Lebowitz, J.L.; Spohn, H. A Gallavotti-Cohen-Type Symmetry in the Large Deviation Functional for Stochastic Dynamics. J. Stat. Phy. 1999, 95, 333–365. [Google Scholar] [CrossRef]
- Saito, K.; Takesue, S.; Miyashita, S. Thermal conduction in a quantum system. Phys. Rev. E 1996, 54, 2404–2407. [Google Scholar] [CrossRef] [PubMed]
- Michel, M.; Hartmann, M.; Gemmer, J.; Mahler, G. Fourier’s Law confirmed for a class of small quantum systems. Eur. Phys. J. B 2003, 34, 325–330. [Google Scholar] [CrossRef]
- Saito, K. Strong evidence of normal heat conduction in a one-dimensional quantum system. Europhys. Lett. 2003, 61, 34–40. [Google Scholar] [CrossRef]
- Michel, M.; Gemmer, J.; Mahler, G. Heat conductivity in small quantum systems: Kubo formula in Liouville space. Eur. Phys. J. B 2004, 42, 555–559. [Google Scholar] [CrossRef]
- Michel, M.; Mahler, G.; Gemmer, J. Fourier’s Law from Schrödinger Dynamics. Phys. Rev. Lett. 2005, 95, 180602. [Google Scholar] [CrossRef]
- Jung, P.; Helmes, R.W.; Rosch, A. Transport in Almost Integrable Models: Perturbed Heisenberg Chains. Phys. Rev. Lett. 2006, 96, 067202. [Google Scholar] [CrossRef]
- Wichterich, H.; Henrich, M.J.; Breuer, H.-P.; Gemmer, J.; Michel, M. Modeling heat transport through completely positive maps. Phys. Rev. E 2007, 76, 031115. [Google Scholar] [CrossRef]
- Prosen, T. Exact Nonequilibrium Steady State of a Strongly Driven Open XXZ Chain. Phys. Rev. Lett. 2011, 107, 137201. [Google Scholar] [CrossRef]
- Bochkov, G.N.; Kusovlev, Y.E. General theory of thermal fluctuations in nonlinear systems. Zh. Eksp. Theor. Fiz. 1977, 72, 238–247. [Google Scholar]
- Bochkov, G.N.; Kusovlev, Y.E. Nonlinear Fluctuation-dissipation relations and stochastic models in nonequilibrium themrodynamics I. Physica A 1981, 106, 443–479. [Google Scholar] [CrossRef]
- Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 1997, 78, 2690. [Google Scholar] [CrossRef]
- Piechocinska, B. Information erasure. Phys. Rev. A 2000, 61, 062314. [Google Scholar] [CrossRef]
- Kurchan, J. A quantum fluctuation theorem. arXiv 2000, arXiv:0007360v2. [Google Scholar]
- Tasaki, H. Jarzynski Relations for Quantum Systems and Some Applications. arXiv 2000, arXiv:0000244v2. [Google Scholar]
- Mukamel, S. Quantum Extension of the Jarzynski Relation: Analogy with Stochastic Dephasing. Phys. Rev. Lett. 2003, 90, 170604. [Google Scholar] [CrossRef]
- Talkner, P.; Morillo, M.; Yi, J.; Hänggi, P. Statistics of work and fluctuation theorems for microcanonical initial states. New J. Phys. 2013, 15, 095001. [Google Scholar] [CrossRef]
- Schmiedl, T.; Seifert, U. Stochastic thermodynamics of chemical reaction networks. J. Chem. Phys. 2007, 126, 044101. [Google Scholar] [CrossRef]
- Saito, K.; Utsumi, Y. Symmetry in full counting statistics, fluctuation theorem, and relations among nonlinear transport coefficients in the presence of a magnetic field. Phys. Rev. B 2008, 78, 115429. [Google Scholar] [CrossRef]
- Andrieux, D.; Gaspard, P.; Monnai, T.; Tasaki, S. The fluctuation theorem for currents in open quantum systems. New J. Phys. 2009, 11, 043014, Erratum in New J. Phys. 2009, 11, 109802. [Google Scholar] [CrossRef]
- Yi, J.; Talkner, P.; Campisi, M. Nonequilibrium work statistics of an Aharonov-Bohm flux. Phys. Rev. E 2011, 84, 011138. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M. Stochastic thermodynamics under coarse graining. Phys. Rev. E 2012, 85, 041125. [Google Scholar] [CrossRef]
- Yi, J.; Kim, Y.W.; Talkner, P. Work fluctuations for Bose particles in grand canonical initial states. Phys. Rev. E 2012, 85, 051107. [Google Scholar]
- Campisi, M.; Hänggi, P.; Talkner, P. Colloquium: Quantum fluctuation relations: Foundations and applications. Rev. Mod. Phys. 2011, 83, 771–791, Erratum in Rev. Mod. Phys. 2011, 83, 1653. [Google Scholar] [CrossRef]
- Micadei, K.; Landi, G.T.; Lutz, E. Quantum Fluctuation Theorems beyond Two-Point Measurements. Phys. Rev. Lett. 2020, 124, 090602. [Google Scholar] [CrossRef]
- Díaz, M.G.; Guarnieria, G.; Paternostro, M. Quantum Work Statistics with Initial Coherence. Entropy 2020, 22, 1223. [Google Scholar] [CrossRef]
- Gherardini, S.; Belenchia, A.; Paternostro, M.; Trombettoni, A. End-point measurement approach to assess quantum coherence in energy fluctuations. Phys. Rev. A 2021, 104, L050203. [Google Scholar] [CrossRef]
- Schmidt, H.-J.; Gemmer, J. A Framework for Sequential Measurements and General Jarzynski Equations. Z. Naturforsch. A 2020, 75, 265–284. [Google Scholar] [CrossRef]
- Schmidt, H.-J.; Gemmer, J. Sequential measurements and entropy. J. Phys. Conf. Ser. 2020, 1638, 012007. [Google Scholar] [CrossRef]
- Schmidt, H.-J.; Schnack, J.; Gemmer, J. Stochastic thermodynamics of a finite quantum system coupled to a heat bath. Z. Naturforsch. A 2021, 76, 731–745. [Google Scholar] [CrossRef]
- Ciccarello, F.; Lorenzo, S.; Giovannetti, V.; Palma, G.M. Quantum collision models: Open system dynamics from repeated interactions. Phys. Rep. 2022, 954, 1–70. [Google Scholar] [CrossRef]
- Jader, S.; Timpanaro, A.; Landi, G. Joint fluctuation theorems for sequential heat exchange. Entropy 2020, 2020, 763. [Google Scholar]
- Crooks, G.E. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 1999, 60, 2721. [Google Scholar] [CrossRef]
- Jarzynski, C.; Wójcik, D.K. Classical and Quantum Fluctuation Theorems for Heat Exchange. Phys. Rev. Lett. 2004, 92, 230602. [Google Scholar] [CrossRef] [PubMed]
- Jennings, D.; Rudolph, T. Entanglement and the thermodynamic arrow of time. Phys. Rev. E 2010, 81, 061130. [Google Scholar] [CrossRef]
- Sagawa, T. Entropy, Divergence, and Majorization in Classical and Quantum Thermodynamics. arXiv 2020, arXiv:2007.09974v3. [Google Scholar]
- Spohn, H. Entropy production for quantum dynamical semigroups. J. Math. Phys. 1978, 19, 1227–1230. [Google Scholar] [CrossRef]
- Aoki, T.; Matsuzaki, Y.; Hakoshima, H. Total thermodynamic entropy production rate of an isolated quantum system can be negative for the GKSL-type Markovian dynamics of its subsystem. arXiv 2021, arXiv:2103.05308v1. [Google Scholar]
- Strasberg, P.; Winter, A. First and Second Law of Quantum Thermodynamics: A Consistent Derivation Based on a Microscopic Definition of Entropy. arXiv 2021, arXiv:2002.08817v5. [Google Scholar] [CrossRef]
- Jaynes, E.T.; Cummings, F.W. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 1963, 51, 89–109. [Google Scholar] [CrossRef]
- Gerry, C.C.; Eberly, J.H. Dynamics of a Raman coupled model interacting with two quantized cavity fields. Phys. Rev. A 1990, 42, 6805–6815. [Google Scholar] [CrossRef] [PubMed]
- Alexanian, M.; Bose, S.K. Unitary transformation and the dynamics of a three-level atom interacting with two quantized field modes. Phys. Rev. A 1995, 52, 2218–2224. [Google Scholar] [CrossRef] [PubMed]
- Torosov, B.T.; Longhia, S.; Vallea, G.D. Mixed Rabi Jaynes-Cummings model of a three-level atom interacting with two quantized fields. Opt. Commun. 2015, 346, 110–114. [Google Scholar] [CrossRef]
- NIST Digital Library of Mathematical Functions; Release 1.1.1 of 2021-03-15; Olver, F.W.J., Daalhuis, A.B.O., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V., Cohl, H.S., McClain, M.A., Eds.; Available online: http://dlmf.nist.gov/ (accessed on 14 March 2023).
- von Neumann, J. Mathematische Grundlagen der Quantenmechanik; Springer: Berlin, Germany, 1932; English translation: Mathematical Foundations of Quantum Mechanics; Princeton University Press: Princeton, NJ, USA, 1955. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidt, H.-J.; Gemmer, J. Stochastic Thermodynamics of a Finite Quantum System Coupled to Two Heat Baths. Entropy 2023, 25, 504. https://doi.org/10.3390/e25030504
Schmidt H-J, Gemmer J. Stochastic Thermodynamics of a Finite Quantum System Coupled to Two Heat Baths. Entropy. 2023; 25(3):504. https://doi.org/10.3390/e25030504
Chicago/Turabian StyleSchmidt, Heinz-Jürgen, and Jochen Gemmer. 2023. "Stochastic Thermodynamics of a Finite Quantum System Coupled to Two Heat Baths" Entropy 25, no. 3: 504. https://doi.org/10.3390/e25030504
APA StyleSchmidt, H.-J., & Gemmer, J. (2023). Stochastic Thermodynamics of a Finite Quantum System Coupled to Two Heat Baths. Entropy, 25(3), 504. https://doi.org/10.3390/e25030504