Fair Numerical Algorithm of Coset Cardinality Spectrum for Distributed Arithmetic Coding
Abstract
1. Introduction
2. Review on DAC and CCS
3. Original Numerical Algorithms
3.1. Rounding Numerical Algorithm
3.2. Linear Numerical Algorithm
- If , then . If , then .
- If , then . If , then .
- If and , then . If and , then .
4. Fair Numerical Algorithm
4.1. Calculation of
- : It is easy to know .
- : In general, we haveEspecially, if , then
- : In general, we haveLet us consider three special cases:
- —
- If and , then
- —
- If and , then
- —
- If and , then
4.2. Calculation of
- : It is easy to know .
- : In general, we haveEspecially, if , then
- : In general, we haveLet us consider three special cases:
- —
- If and , then
- —
- If and , then
- —
- If and , then
4.3. Discussion
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Slepian, D.; Wolf, J.K. Noiseless coding of correlated information sources. IEEE Trans. Inf. Theory 1973, 19, 471–480. [Google Scholar] [CrossRef]
- Berger, T. Multiterminal source coding. In The Information Theory Approach to Communications; Longo, G., Ed.; Springer: New York, NY, USA, 1977. [Google Scholar]
- Wyner, A.; Ziv, J. The rate-distortion function for source coding with side information at the decoder. IEEE Trans. Inf. Theory 1976, 22, 1–10. [Google Scholar] [CrossRef]
- Wyner, A. The rate-distortion function for source coding with side information at the decoder-II: General sources. Inf. Control 1978, 38, 60–80. [Google Scholar] [CrossRef]
- Pradhan, S.; Chou, J.; Ramchandran, K. Duality between source coding and channel coding and its extension to the side information case. IEEE Trans. Inf. Theory 2003, 49, 1181–1203. [Google Scholar] [CrossRef]
- Chen, J.; He, D.-K.; Jagmohan, A. On the duality between Slepian-Wolf coding and channel coding under mismatched decoding. IEEE Trans. Inf. Theory 2009, 55, 4006–4018. [Google Scholar] [CrossRef]
- Chen, J.; He, D.-K.; Jagmohan, A.; Lastras-Montano, L.A.; Yang, E.-H. On the linear codebook-level duality between Slepian-Wolf coding and channel coding. IEEE Trans. Inf. Theory 2009, 55, 5575–5590. [Google Scholar] [CrossRef]
- Chen, J.; He, D.-K.; Jagmohan, A. The equivalence between Slepian-Wolf coding and channel coding under density evolution. IEEE Trans. Commun. 2009, 57, 2534–2540. [Google Scholar] [CrossRef]
- Chen, J.; He, D.-K.; Jagmohan, A.; Lastras-Montano, L.A. On the reliability function of variable-rate Slepian-Wolf coding. Entropy 2017, 19, 389. [Google Scholar] [CrossRef]
- Garcia-Frias, J.; Zhao, Y. Compression of correlated binary sources using turbo codes. IEEE Commun. Lett. 2001, 5, 417–419. [Google Scholar] [CrossRef]
- Liveris, A.; Xiong, Z.; Georghiades, C. Compression of binary sources with side information at the decoder using LDPC codes. IEEE Commun. Lett. 2002, 6, 440–442. [Google Scholar] [CrossRef]
- Bilkent, E. Polar coding for the Slepian-Wolf problem based on monotone chain rules. In Proceedings of the IEEE International Symposium on Information Theory and Its Applications (ISITA2012), Honolulu, HI, USA, 28–31 October 2012; pp. 566–570. [Google Scholar]
- Rissanen, J. Generalized Kraft inequality and arithmetic coding. IBM J. Res. Dev. 1976, 20, 198–203. [Google Scholar] [CrossRef]
- Witten, I.; Neal, R.; Cleary, J. Arithmetic coding for data compression. Commun. ACM 1987, 30, 520–540. [Google Scholar] [CrossRef]
- Boyd, C.; Cleary, J.; Irvine, S.; Rinsma-Melchert, I.; Witten, I. Integrating error detection into arithmetic coding. IEEE Trans. Commun. 1997, 45, 1–3. [Google Scholar] [CrossRef]
- Anand, R.; Ramchandran, K.; Kozintsev, I.V. Continuous error detection (CED) for reliable communication. IEEE Trans. Commun. 2001, 49, 1540–1549. [Google Scholar] [CrossRef]
- Grangetto, M.; Cosman, P.; Olmo, G. Joint source/channel coding and MAP decoding of arithmetic codes. IEEE Trans. Commun. 2005, 53, 1007–1016. [Google Scholar] [CrossRef]
- Malinowski, S.; Artigas, X.; Guillemot, C.; Torres, L. Distributed coding using punctured quasi-arithmetic codes for memory and memoryless sources. IEEE Trans. Signal Process. 2009, 57, 4154–4158. [Google Scholar] [CrossRef]
- Grangetto, M.; Magli, E.; Olmo, G. Distributed arithmetic coding. IEEE Commun. Lett. 2007, 11, 883–885. [Google Scholar] [CrossRef]
- Grangetto, M.; Magli, E.; Olmo, G. Distributed arithmetic coding for the Slepian-Wolf problem. IEEE Trans. Signal Process. 2009, 57, 2245–2257. [Google Scholar] [CrossRef]
- Artigas, X.; Malinowski, S.; Guillemot, C.; Torres, L. Overlapped quasi-arithmetic codes for distributed video coding. Proc. IEEE ICIP 2007, II, 9–12. [Google Scholar]
- Yang, N.; Fang, Y.; Wang, L.; Wang, Z.; Jiang, F. Approximation of initial coset cardinality spectrum of distributed arithmetic coding for uniform binary sources. IEEE Commun. Lett. 2022. in progress to appear. [Google Scholar] [CrossRef]
- Fang, Y.; Jeong, J. Distributed arithmetic coding for sources with hidden Markov correlation. arXiv 2008, arXiv:2101.02336. [Google Scholar]
- Fang, Y. Q-ary distributed arithmetic coding for uniform Q-ary sources. IEEE Trans. Inf. Theory. in progress to appear. [CrossRef]
- Zhou, J.; Wong, K.; Chen, J. Distributed block arithmetic coding for equiprobable sources. IEEE Sens. J. 2013, 13, 2750–2756. [Google Scholar] [CrossRef]
- Wang, Z.; Mao, Y.; Kiringa, I. Non-binary distributed arithmetic coding. In Proceedings of the IEEE 14th Canadian Workshop Information Theory (CWIT), St. John’s, NL, Canada, 6–9 July 2015; pp. 5–8. [Google Scholar]
- Fang, Y. Distribution of distributed arithmetic codewords for equiprobable binary sources. IEEE Signal Process. Lett. 2009, 16, 1079–1082. [Google Scholar] [CrossRef]
- Fang, Y. DAC spectrum of binary sources with equally-likely symbols. IEEE Trans. Commun. 2013, 61, 1584–1594. [Google Scholar] [CrossRef]
- Fang, Y.; Stankovic, V.; Cheng, S.; Yang, E.-H. Analysis on tailed distributed arithmetic codes for uniform binary sources. IEEE Trans. Commun. 2016, 64, 4305–4319. [Google Scholar] [CrossRef]
- Fang, Y.; Stankovic, V. Codebook cardinality spectrum of distributed arithmetic coding for independent and identically-distributed binary sources. IEEE Trans. Inf. Theory 2020, 66, 6580–6596. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, L. Improved binary DAC codec with spectrum for equiprobable sources. IEEE Trans. Commun. 2014, 62, 256–268. [Google Scholar] [CrossRef]
- Fang, Y. Two applications of coset cardinality spectrum of distributed arithmetic coding. IEEE Trans. Inf. Theory 2021, 67, 8335–8350. [Google Scholar] [CrossRef]
- GitHub. Available online: https://github.com/fy79/dac_ccs_num (accessed on 15 December 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Yang, N. Fair Numerical Algorithm of Coset Cardinality Spectrum for Distributed Arithmetic Coding. Entropy 2023, 25, 437. https://doi.org/10.3390/e25030437
Fang Y, Yang N. Fair Numerical Algorithm of Coset Cardinality Spectrum for Distributed Arithmetic Coding. Entropy. 2023; 25(3):437. https://doi.org/10.3390/e25030437
Chicago/Turabian StyleFang, Yong, and Nan Yang. 2023. "Fair Numerical Algorithm of Coset Cardinality Spectrum for Distributed Arithmetic Coding" Entropy 25, no. 3: 437. https://doi.org/10.3390/e25030437
APA StyleFang, Y., & Yang, N. (2023). Fair Numerical Algorithm of Coset Cardinality Spectrum for Distributed Arithmetic Coding. Entropy, 25(3), 437. https://doi.org/10.3390/e25030437