Improved Link Entropy with Dynamic Community Number Detection for Quantifying Significance of Edges in Complex Social Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nonnegative Matrix Factorization Algorithm
2.2. Edge Significance Quantification of Link Entropy Method
2.3. Testing the Performance of Edge Significance Methods
2.4. Community Number Detection Algorithms
2.4.1. Louvain
2.4.2. Leiden
2.4.3. Walktrap
3. Results
3.1. Wang et al.’s Network
3.2. Zachary’s Karate Club Network
3.3. Dolphins Network
3.4. Hermaphrodite Network
3.5. Jazz Network
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LE | Link Entropy |
DLE | Deep Link Entropy |
ILE | Improved Link Entropy |
KPI | Key performance indicator |
NMF | Nonnegative Matrix Factorization |
References
- Ross, K.A.; Wright, C.R. Discrete Mathematics; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1985. [Google Scholar]
- Rosen, K.H. Discrete Mathematics and Its Applications; McGraw Hill: New York, NY, USA, 2012. [Google Scholar]
- Costa, L.d.F.; Rodrigues, F.A.; Travieso, G.; Villas Boas, P.R. Characterization of complex networks: A survey of measurements. Adv. Phys. 2007, 56, 167–242. [Google Scholar] [CrossRef] [Green Version]
- Lü, L.; Chen, D.; Ren, X.L.; Zhang, Q.M.; Zhang, Y.C.; Zhou, T. Vital nodes identification in complex networks. Phys. Rep. 2016, 650, 1–63. [Google Scholar] [CrossRef] [Green Version]
- Yu, E.Y.; Chen, D.B.; Zhao, J.Y. Identifying critical edges in complex networks. Sci. Rep. 2018, 8, 14469. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.W.; Zhan, X.X.; Zhang, Z.K.; Liu, C. Vital node identification in hypergraphs via gravity model. arXiv 2022, arXiv:2208.04625. [Google Scholar] [CrossRef]
- Zio, E.; Golea, L.R.; Rocco S., C.M. Identifying groups of critical edges in a realistic electrical network by multi-objective genetic algorithms. Reliab. Eng. Syst. Saf. 2012, 99, 172–177. [Google Scholar] [CrossRef] [Green Version]
- Gaur, V.; Yadav, O.; Soni, G.; Rathore, A. Identification of critical nodes and edges in a network based on clustering. Procedia Manuf. 2020, 51, 1298–1304. [Google Scholar] [CrossRef]
- Xia, Y.; Hill, D.J. Attack vulnerability of complex communication networks. IEEE Trans. Circuits Syst. II Express Briefs 2008, 55, 65–69. [Google Scholar] [CrossRef]
- Wan, R.; Xiong, N.; The Loc, N. An energy-efficient sleep scheduling mechanism with similarity measure for wireless sensor networks. Hum.-Centric Comput. Inf. Sci. 2018, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Guruprakash, B.; Balasubramanian, C.; Sukumar, R. An approach by adopting multi-objective clustering and data collection along with node sleep scheduling for energy efficient and delay aware WSN. Peer-to-Peer Netw. Appl. 2020, 13, 304–319. [Google Scholar] [CrossRef]
- Girvan, M.; Newman, M.E. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.E. Spread of epidemic disease on networks. Phys. Rev. E 2002, 66, 016128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trujillo, C.M.; Long, T.M. Document co-citation analysis to enhance transdisciplinary research. Sci. Adv. 2018, 4, e1701130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aljohani, N.R.; Fayoumi, A.; Hassan, S.U. A Novel Deep Neural Network-Based Approach to Measure Scholarly Research Dissemination Using Citations Network. Appl. Sci. 2021, 11, 10970. [Google Scholar] [CrossRef]
- Porter, M.A.; Onnela, J.P.; Mucha, P.J. Communities in networks. Not. AMS 2009, 56, 1082–1097. [Google Scholar] [CrossRef]
- Fortunato, S. Community detection in graphs. Phys. Rep. 2010, 486, 75–174. [Google Scholar] [CrossRef] [Green Version]
- Yu, E.Y.; Fu, Y.; Zhou, J.L.; Chen, D.B. Finding Important Edges in Networks through Local Information. In Proceedings of the 2021 7th International Conference on Computer and Communications (ICCC), Chengdu, China, 10–13 December 2021; pp. 2225–2229. [Google Scholar] [CrossRef]
- Sunstein, C.R. The Law of Group Polarization. University of Chicago Law School, John M. Olin Law & Economics Working Paper. SSRN 1999. [Google Scholar] [CrossRef]
- Adamic, L.A.; Glance, N. The political blogosphere and the 2004 US election: Divided they blog. In Proceedings of the 3rd International Workshop on Link Discovery, Chicago, IL, USA, 21–25 August 2005; pp. 36–43. [Google Scholar] [CrossRef]
- Sunstein, C.R. # Republic; Princeton University Press: Princeton, NJ, USA, 2018. [Google Scholar]
- Ozaydin, S.Y. Hashtag Wars, Online Political Polarization and Mayoral Elections. Sos. Bilim. Araştırma Derg. 2021, 10, 548–557. [Google Scholar]
- Colleoni, E.; Rozza, A.; Arvidsson, A. Echo chamber or public sphere? Predicting political orientation and measuring political homophily in Twitter using big data. J. Commun. 2014, 64, 317–332. [Google Scholar] [CrossRef]
- Quattrociocchi, W.; Scala, A.; Sunstein, C.R. Echo chambers on Facebook. SSRN 2016. [Google Scholar] [CrossRef] [Green Version]
- Flaxman, S.; Goel, S.; Rao, J.M. Filter bubbles, echo chambers, and online news consumption. Public Opin. Q. 2016, 80, 298–320. [Google Scholar] [CrossRef] [Green Version]
- Ozaydin, S.Y.; Nishida, R. Fragmentation and Dynamics of Echo Chambers of Turkish Political Youth Groups on Twitter. J. Socio-Informat. 2021, 14, 17–32. [Google Scholar] [CrossRef]
- Sasahara, K.; Chen, W.; Peng, H.; Ciampaglia, G.L.; Flammini, A.; Menczer, F. Social influence and unfollowing accelerate the emergence of echo chambers. J. Comput. Soc. Sci. 2021, 4, 381–402. [Google Scholar] [CrossRef]
- Massumi, B. The autonomy of affect. In Cultural Critique; University of Minnesota Press: Minneapolis, MN, USA, 1995; pp. 83–109. [Google Scholar] [CrossRef] [Green Version]
- Freeman, L.C. A set of measures of centrality based on betweenness. Sociometry 1977, 40, 35–41. [Google Scholar] [CrossRef]
- Anthonisse, J.M. The rush in a directed graph. In Stichting Mathematisch Centrum. Mathematische Besliskunde; Stichting Mathematisch Centrum: Amsterdam, The Netherlands, 1971. [Google Scholar]
- Alahakoon, T.; Tripathi, R.; Kourtellis, N.; Simha, R.; Iamnitchi, A. K-path centrality: A new centrality measure in social networks. In Proceedings of the 4th Workshop on Social Network Systems, Salzburg, Austria, 10–13 April 2011; pp. 1–6. [Google Scholar] [CrossRef]
- De Meo, P.; Ferrara, E.; Fiumara, G.; Ricciardello, A. A novel measure of edge centrality in social networks. Knowl.-Based Syst. 2012, 30, 136–150. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.X.; Chen, G. Universal robustness characteristic of weighted networks against cascading failure. Phys. Rev. E 2008, 77, 026101. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.Q.; Ren, F.X.; Shen, H.W.; Zhang, Z.K.; Zhou, T. Bridgeness: A local index on edge significance in maintaining global connectivity. J. Stat. Mech. Theory Exp. 2010, 2010, P10011. [Google Scholar] [CrossRef] [Green Version]
- Solé, R.V.; Valverde, S. Information theory of complex networks: On evolution and architectural constraints. In Complex Networks; Springer: Berlin/Heidelberg, Germany, 2004; pp. 189–207. [Google Scholar] [CrossRef] [Green Version]
- Rosvall, M.; Bergstrom, C.T. An information-theoretic framework for resolving community structure in complex networks. Proc. Natl. Acad. Sci. USA 2007, 104, 7327–7331. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Yu, S.; Huang, Y.; Zhang, Z.K. Effective model integration algorithm for improving link and sign prediction in complex networks. IEEE Trans. Netw. Sci. Eng. 2021, 8, 2613–2624. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, B.; Chang, F. Overlapping Community Detection of Bipartite Networks Based on a Novel Community Density. Future Internet 2021, 13, 89. [Google Scholar] [CrossRef]
- Bianconi, G. Entropy of network ensembles. Phys. Rev. E 2009, 79, 036114. [Google Scholar] [CrossRef] [Green Version]
- Anand, K.; Bianconi, G. Gibbs entropy of network ensembles by cavity methods. Phys. Rev. E 2010, 82, 011116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Tang, H.; Guo, C.; Xiu, Z. Entropy optimization of scale-free networks’ robustness to random failures. Phys. A Stat. Mech. Its Appl. 2006, 363, 591–596. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.; Wiesner, K. Clarifying How Degree Entropies and Degree-Degree Correlations Relate to Network Robustness. Entropy 2022, 24, 1182. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Tan, Z.X.; Ye, Y.; Wang, L.; Cheong, K.H.; Xie, N.g. A rumor spreading model based on information entropy. Sci. Rep. 2017, 7, 9615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, T.; Gao, Q.; Chen, Y.W.; Cheong, K.H. Exploring the vulnerability of transportation networks by entropy: A case study of Asia–Europe maritime transportation network. Reliab. Eng. Syst. Saf. 2022, 108578. [Google Scholar] [CrossRef]
- Lei, M.; Cheong, K.H. Node influence ranking in complex networks: A local structure entropy approach. Chaos Solitons Fractals 2022, 160, 112136. [Google Scholar] [CrossRef]
- Qian, Y.; Li, Y.; Zhang, M.; Ma, G.; Lu, F. Quantifying edge significance on maintaining global connectivity. Sci. Rep. 2017, 7, 45380. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Li, T.; Wang, X.; Zhu, S.; Ding, C. Community discovery using nonnegative matrix factorization. Data Min. Knowl. Discov. 2011, 22, 493–521. [Google Scholar] [CrossRef]
- Lin, J. Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 1991, 37, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Ozaydin, S.Y.; Ozaydin, F. Deep Link Entropy for Quantifying Edge Significance in Social Networks. Appl. Sci. 2021, 11, 11182. [Google Scholar] [CrossRef]
- Ozaydin, F.; Ozaydin, S.Y. Detecting Political Secession of Fragmented Communities in Social Networks via Deep Link Entropy Method. In Proceedings of the The Asian Conference on Media, Communication & Film 2021: Official Conference Proceedings, Online from Kyoto, Japan, 9–11 November 2021. [Google Scholar] [CrossRef]
- Lv, H.; Zhang, B.; Hu, S.; Xu, Z. Deep Link-Prediction Based on the Local Structure of Bipartite Networks. Entropy 2022, 24, 610. [Google Scholar] [CrossRef] [PubMed]
- Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [Google Scholar] [CrossRef] [Green Version]
- Traag, V.A.; Waltman, L.; Van Eck, N.J. From Louvain to Leiden: Guaranteeing well-connected communities. Sci. Rep. 2019, 9, 5233. [Google Scholar] [CrossRef] [Green Version]
- Pons, P.; Latapy, M. Computing communities in large networks using random walks. J. Graph Algorithms Appl. Citeseer 2006, 10, 191–218. [Google Scholar] [CrossRef] [Green Version]
- Zachary, W.W. An information flow model for conflict and fission in small groups. J. Anthropol. Res. 1977, 33, 452–473. [Google Scholar] [CrossRef] [Green Version]
- Lusseau, D.; Schneider, K.; Boisseau, O.J.; Haase, P.; Slooten, E.; Dawson, S.M. The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 2003, 54, 396–405. [Google Scholar] [CrossRef]
- Cook, S.J.; Jarrell, T.A.; Brittin, C.A.; Wang, Y.; Bloniarz, A.E.; Yakovlev, M.A.; Nguyen, K.C.; Tang, L.T.H.; Bayer, E.A.; Duerr, J.S.; et al. Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature 2019, 571, 63–71. [Google Scholar] [CrossRef]
- Gleiser, P.M.; Danon, L. Community structure in jazz. Adv. Complex Syst. 2003, 6, 565–573. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.E.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69, 026113. [Google Scholar] [CrossRef] [Green Version]
- Brandes, U.; Delling, D.; Gaertler, M.; Gorke, R.; Hoefer, M.; Nikoloski, Z.; Wagner, D. On modularity clustering. IEEE Trans. Knowl. Data Eng. 2007, 20, 172–188. [Google Scholar] [CrossRef] [Green Version]
- Clauset, A.; Newman, M.E.; Moore, C. Finding community structure in very large networks. Phys. Rev. E 2004, 70, 066111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duch, J.; Arenas, A. Community detection in complex networks using extremal optimization. Phys. Rev. E 2005, 72, 027104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traag, V.A. Faster unfolding of communities: Speeding up the Louvain algorithm. Phys. Rev. E 2015, 92, 032801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Method | Area |
---|---|
LE | 41.300 |
ILE | 21.566 |
ILE_Louvain | 21.600 |
ILE_Leiden | 21.566 |
ILE_Walktrap | 21.566 |
Method | Area |
---|---|
LE | 44.294 |
ILE | 27.705 |
ILE_Louvain | 27.794 |
ILE_Leiden | 27.764 |
ILE_Walktrap | 31.705 |
Method | Area |
---|---|
LE | 97.016 |
ILE | 75.290 |
ILE_Louvain | 55.145 |
ILE_Leiden | 52.209 |
ILE_Walktrap | 60.548 |
Method | Area |
---|---|
LE | 828.304 |
ILE | 674.345 |
ILE_Louvain | 507.464 |
ILE_Leiden | 553.392 |
ILE_Walktrap | 628.266 |
Method | Area |
---|---|
LE | 1845.353 |
ILE | 1613.176 |
ILE_Louvain | 940.005 |
ILE_Leiden | 941.843 |
ILE_Walktrap | 1353.838 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lubashevskiy, V.; Ozaydin, S.Y.; Ozaydin, F. Improved Link Entropy with Dynamic Community Number Detection for Quantifying Significance of Edges in Complex Social Networks. Entropy 2023, 25, 365. https://doi.org/10.3390/e25020365
Lubashevskiy V, Ozaydin SY, Ozaydin F. Improved Link Entropy with Dynamic Community Number Detection for Quantifying Significance of Edges in Complex Social Networks. Entropy. 2023; 25(2):365. https://doi.org/10.3390/e25020365
Chicago/Turabian StyleLubashevskiy, Vasily, Seval Yurtcicek Ozaydin, and Fatih Ozaydin. 2023. "Improved Link Entropy with Dynamic Community Number Detection for Quantifying Significance of Edges in Complex Social Networks" Entropy 25, no. 2: 365. https://doi.org/10.3390/e25020365
APA StyleLubashevskiy, V., Ozaydin, S. Y., & Ozaydin, F. (2023). Improved Link Entropy with Dynamic Community Number Detection for Quantifying Significance of Edges in Complex Social Networks. Entropy, 25(2), 365. https://doi.org/10.3390/e25020365