Gravity, Quantum Fields and Quantum Information: Problems with Classical Channel and Stochastic Theories
Abstract
1. Preamble
2. Problem 1: Quantum Fields Misconstrued as Information Channels
2.1. Quantum Channels
- In a direct interaction channel, the emitter and receiver interact through a unitary map on . Then
- In a mediated interaction channel, there exists a mediating system described by the Hilbert space . Both emitter and receiver interact through the mediator, but not directly with each other. Then, the Hamiltonian is , where describes the interaction of the emitter with the mediator and describes the interaction of the receiver with the mediator. These interactions are usually viewed as permanent, i.e., that they cannot be switched on or off.
2.2. Problems with Treating QFT as Quantum Channel
- A consistent theory of interactions exists only if receiver and emitter are also treated by QFT. However, then, the Hamiltonian of the system cannot be defined on a tensor product Hilbert space , as in a mediated interaction channel. This statement follows from classic theorems by Haag [1] and Hall and Wightman [2]. This means that the degrees of freedom of the field are intertwined with those of the emitter and the receiver, in a way that it is impossible to disentangle. The root of this problem is phenomena such as vacuum polarization—it is impossible to describe the field vacuum as a factorized state or even an entangled state in a factorized single state.
- The notion of a quantum channel originates from Quantum Information Theory (QIT), which has mainly been developed in the context of non-relativistic quantum mechanics, a small corner of full QFT. Current QIT is problematic when basic relativistic principles—both special and general—such as causality and covariance, need be accounted for. A relativistic QIT that expresses all informational notions in terms of quantum fields is currently missing, largely because of difficulties in formulating a comprehensive QFT theory of measurement [3].
- The naive idea of a field as an object that mediates interaction is insufficient to describe the actual theories of mediating interactions, namely, gauge field theories. The reason is that it does not take into account the presence of constraints, which are a consequence of the gauge symmetry. The same issue appears in the treatment of gravity.
2.3. Implications for Gravity
2.4. Event Formalism and Closed Timelike Curves
3. Problem 2: Quantum Processes/Fluctuations Cannot Be Replaced by Classical Stochastic Processes/Noises
3.1. Fluctuations as Sources of Gravitational Decoherence—What Is Missing or Misleading
3.2. Classical Stochastic Processes or Noises Miss Out Important Information in Quantum Theories
4. Problem 3: How Are Semiclassical and Stochastic Theories Related to Their Quantum Origins? How Does Noise Enter?
4.1. Semiclassical Theory as Large N Limit of Quantum Theory
4.2. Stochastic Semiclassical Theory: Noise Can Be Defined for Quantum Fluctuations in Gaussian Systems
5. Conclusions
- (i)
- Staying in the confines of nonrelativistic quantum mechanics to describe quantum field processes and quantum information;
- (ii)
- Using information channels to describe quantum and gravitational effects in substitution of QFT and GR;
- (iii)
- Introducing classical stochastic sources or processes to mock up quantum field fluctuations or replace quantum field processes, leading to theories with inconsistencies or pathologies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haag, R. On Quantum Field Theories. Mat.-Fys. Meddelelser 1955, 29, 12. [Google Scholar]
- Hall, D.; Wightman, A.S. A Theorem on Invariant Analytic Functions with Applications to Relativistic Quantum Field Theory. Mat.-Fys. Meddelelser 1957, 31, 1. [Google Scholar]
- Anastopoulos, C.; Savvidou, N. Quantum Information in Relativity: The Challenge of QFT Measurements. Entropy 2022, 24, 4. [Google Scholar] [CrossRef] [PubMed]
- Malament, D. In Defense of Dogma: Why There Cannot Be A Relativistic Quantum Mechanics of (Localizable) Particles. In Perspectives on Quantum Reality; Clifton, R., Ed.; Kluwer Academic: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Schlieder, S. Zum Kausalen Verhalten eines Relativistischen Quantenmechanischen Systems. In Quanten und Felder, W. Heisenberg zum 70. Geburtstag; Dürr, H.P., Ed.; Vieweg: Decatur, IL, USA, 1971; p. 145. [Google Scholar]
- Hegerfeldt, G.C. Instantaneous Spreading and Einstein Causality in Quantum Theory. Ann. Phys. 1998, 7, 716. [Google Scholar] [CrossRef]
- Fermi, E. Quantum Theory of Radiation. Rev. Mod. Phys. 1932, 4, 87. [Google Scholar] [CrossRef]
- Shirokov, M.I. Velocity of Electromagnetic Radiation in Quantum Electrodynamics. Yad. Fiz. 1966, 4, 1077, reprinted in Sov. J. Nucl. Phys. 1967, 4, 774. [Google Scholar]
- Hegerfeldt, G.C. Causality Problems for Fermi’s Two-Atom System. Phys. Rev. Lett. 1994, 72, 596. [Google Scholar] [CrossRef]
- Hegerfeldt, G.C. Problems about Causality in Fermi’sTwo-Atom Model and Possible Resolutions. In Non-Linear, Deformed and Irreversible Quantum Systems; Doebner, H.-D., Dobrev, V.K., Nattermann, P., Eds.; World Scientific: Singapore, 1995. [Google Scholar]
- Arnowitt, R.; Deser, S.; Misner, C. The Dynamics of General Relativity. In Gravitation: An Introduction to Current Research; John Wiley & Sons/Wiley: Hoboken, NJ, USA, 1962. [Google Scholar]
- Anastopoulos, C.; Lagouvardos, M.; Savvidou, K. Gravitational Effects in Macroscopic Quantum Systems: A First-Principles Analysis. Class. Quantum Grav. 2021, 38, 155012. [Google Scholar] [CrossRef]
- Schwabl, F. Quantum Mechanics; Springer: Berlin, Germany, 2007. [Google Scholar]
- Anastopoulos, C.; Hu, B.L. Problems with the Newton-Schrödinger Equations. New J. Phys. 2014, 16, 085007. [Google Scholar] [CrossRef]
- Adler, S.L. Comments on proposed gravitational modifications of Schrödinger dynamics and their experimental implications. J. Phys. A Math. Theor. 2007, 40, 755–763. [Google Scholar] [CrossRef]
- Kafri, D.; Taylor, J.M.; Milburn, G.J. A Classical Channel Model for Gravitational Decoherence. New J. Phys. 2014, 16, 065020. [Google Scholar] [CrossRef]
- Tilloy, A.; Diósi, L. Sourcing Semiclassical Gravity from Spontaneously Localized Quantum Matter. Phys. Rev. D 2016, 93, 024026. [Google Scholar] [CrossRef]
- Gaona-Reyes, J.L.; Carlesso, M.; Bassi, A. Gravitational Interaction through a Feedback Mechanism. Phys. Rev. D 2021, 103, 056011. [Google Scholar] [CrossRef]
- Altamirano, N.; Corona-Ugalde, P.; Mann, R.B.; Zych, M. Gravity is not a Pairwise Local Classical Channel. Class. Quantum Grav. 2018, 35, 145005. [Google Scholar] [CrossRef]
- Oppenheim, J. A post-quantum theory of classical gravity? arXiv 2018, arXiv:1811.03116. [Google Scholar]
- Oppenheim, J.; Weller-Davies, Z. The constraints of post-quantum classical gravity. J. High Energy Phys. 2022, 2022, 80. [Google Scholar] [CrossRef]
- Bose, S.; Mazumdar, A.; Morley, G.W.; Ulbricht, H.; Toro, M.; Paternostro, M.; Geraci, A.A.; Barker, P.F.; Kim, M.S.; Milburn, G. A Spin Entanglement Witness for Quantum Gravity. Phys. Rev. Lett. 2017, 119, 240401. [Google Scholar] [CrossRef]
- Marletto, C.; Vedral, V. Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity. Phys. Rev. Lett. 2017, 119, 240402. [Google Scholar] [CrossRef]
- Anastopoulos, C.; Hu, B.L. Quantum Superposition of Two Gravitational Cat States. Class. Quant. Grav. 2020, 37, 235012. [Google Scholar] [CrossRef]
- Anastopoulos, C.; Hu, B.L. A Master Equation for Gravitational Decoherence: Probing the Textures of Spacetime. Class. Quant. Grav. 2013, 30, 165007. [Google Scholar] [CrossRef]
- Blencowe, M. Effective Field Theory Approach to Gravitationally Induced Decoherence. Phys. Rev. Lett. 2013, 111, 021302. [Google Scholar] [CrossRef] [PubMed]
- Belenchia, A.; Wald, R.M.; Giacomini, F.; Castro-Ruiz, E.; Brukner, Č.; Aspelmeyer, M. Quantum Superposition of Massive Objects and the Quantization of Gravity. Phys. Rev. D 2018, 98, 126009. [Google Scholar] [CrossRef]
- Blanchard, P.; Jadcyk, A. Strongly Coupled Quantum and Classical Systems and Zeno’s Effect. Phys. Lett. A 1993, 175, 157. [Google Scholar] [CrossRef]
- Diosi, L.; Halliwell, J.J. Coupling Classical and Quantum Variables using Continuous Quantum Measurement Theory. Phys. Rev. Lett. 1998, 81, 2846. [Google Scholar] [CrossRef]
- Diosi, L.; Gisin, N.; Strunz, W.T. Quantum Approach to Coupling Classical and Quantum Dynamics. Phys. Rev. A 2000, 61, 022108. [Google Scholar] [CrossRef]
- Hall, M.J.W.; Reginatto, M. Interacting Classical and Quantum Ensembles. Phys. Rev. A 2005, 72, 062109. [Google Scholar] [CrossRef]
- Danielson, D.L.; Satishchandran, G.; Wald, R.M. Gravitationally Mediated Entanglement: Newtonian Field vs. Gravitons. arXiv 2021, arXiv:2112.10798. [Google Scholar]
- Lifshitz, E.M. On the Gravitational Stability of the Expanding Universe. J. Phys. (USSR) 1946, 10, 116. [Google Scholar]
- Ralph, T.C.; Milburn, G.J.; Downes, T. Quantum Connectivity of Spacetime and Gravitationally Induced Decorrelation of Entanglement. Phys. Rev. A 2009, 79, 022121. [Google Scholar] [CrossRef]
- Ralph, T.J.; Pienar, J. Entanglement Decoherence in a Gravitational Well According to the Event Formalism. New J. Phys. 2014, 16, 085008. [Google Scholar] [CrossRef]
- Ralph, T.C. Unitary Solution to a Quantum Gravity Information Paradox. Phys. Rev. A 2007, 76, 012336. [Google Scholar] [CrossRef]
- Deutsch, D. Quantum Mechanics near Closed Timelike Lines. Phys. Rev. D 1991, 44, 3197. [Google Scholar] [CrossRef] [PubMed]
- Somma, R.; Ortiz, G.; Gubernatis, J.E.; Knill, E.; Laflamme, R. Simulating Physical Phenomena by Quantum Networks. Phys. Rev. A 2002, 65, 042323. [Google Scholar] [CrossRef]
- Hawking, S.W. Chronology Protection Conjecture. Phys. Rev. D 1992, 46, 603. [Google Scholar] [CrossRef]
- Kay, B.S.; Radzikowski, M.J.; Wald, R.M. Quantum Field Theory on Spacetimes with a Compactly Generated Cauchy Horizon. Comm. Math. Phys. 1997, 183, 533. [Google Scholar] [CrossRef]
- Wheeler, J.A. Geons. Phys. Rev. 1955, 97, 511. [Google Scholar] [CrossRef]
- Xu, P.; Ma, Y.; Ren, J.G.; Yong, H.L.; Ralph, T.C.; Liao, S.K.; Yin, Y.; Liu, W.-Y.; Cai, W.-Q.; Han, X.; et al. Satellite Testing of a Gravitationally Induced Quantum Decoherence Model. Science 2019, 366, 132–135. [Google Scholar] [CrossRef]
- Diosi, L. Models for Universal Reduction of Macroscopic Quantum Fluctuations. Phys. Rev. A 1989, 40, 1165. [Google Scholar] [CrossRef]
- Ghirardi, G.C.; Grassi, R.; Rimini, A. Continuous-Spontaneous-Reduction Model Involving Gravity. Phys. Rev. A 1990, 42, 1057. [Google Scholar] [CrossRef]
- Gambini, R.; Porto, R.; Pullin, J. Realistic Clocks, Universal Decoherence, and the Black Hole Information Paradox. Phys. Rev. Lett. 2004, 93, 240401. [Google Scholar] [CrossRef]
- Gambini, R.; Porto, R.; Pullin, J. A Relational Solution to the Problem of Time in Quantum Mechanics and Quantum Gravity: A Fundamental Mechanism for Quantum Decoherence. New J. Phys. 2004, 6, 45. [Google Scholar] [CrossRef]
- Milburn, G.J. Lorentz Invariant Intrinsic Decoherence. New J. Phys. 2006, 8, 96. [Google Scholar] [CrossRef]
- Milburn, G.J. Intrinsic Decoherence in Quantum Mechanics. Phys. Rev. A 1991, 44, 5401. [Google Scholar] [CrossRef] [PubMed]
- Bonifacio, R. Time as a Statistical Variable and Intrinsic Decoherence. Nuovo Cim. B 1999, 114, 473. [Google Scholar]
- Barone, P.M.V.B.; Caldeira, A.O. Quantum Mechanics of Radiation Damping. Phys. Rev. A 1991, 43, 57. [Google Scholar] [CrossRef]
- Anastopoulos, C.; Zoupas, A. Non-equilibrium Quantum Electrodynamics. Phys. Rev. D 1998, 58, 105006. [Google Scholar] [CrossRef]
- Johnson, P.R.; Hu, B.L. Stochastic Theory of Relativistic Particles Moving in a Quantum Field: Scalar Abraham-Lorentz-Dirac-Langevin Equation, Radiation Reaction, and Vacuum Fluctuations. Phys. Rev. D 2002, 65, 065015. [Google Scholar] [CrossRef]
- Gell-Mann, M.; Hartle, J.B. Classical Equations for Quantum Systems. Phys. Rev. D 1993, 47, 3345. [Google Scholar] [CrossRef]
- Omnés, R. The Interpretation of Quantum Mechanics; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Anastopoulos, C. Quantum Correlation Functions and the Classical Limit. Phys. Rev. D 2001, 63, 125024. [Google Scholar] [CrossRef]
- Hsiang, J.T.; Hu, B.L. Intrinsic Entropy of Squeezed Quantum Fields and Nonequilibrium Quantum Dynamics of Cosmological Perturbations. Entropy 2021, 23, 1544. [Google Scholar] [CrossRef]
- Buhmann, S.Y. Dispersion Forces I: Macroscopic Quantum Electrodynamics and Ground-State Casimir, Casimir–Polder and van der Waals Forces; Springer: Berlin, Germany, 2012. [Google Scholar]
- Buhmann, S.Y. Dispersion Forces II: Many-Body Effects, Excited Atoms, Finite Temperature and Quantum Friction; Springer: Berlin, Germany, 2013. [Google Scholar]
- Hu, B.L. Gravitational Decoherence, Alternative Quantum Theories and Semiclassical Gravity. J. Phys. Conf. Ser. 2014, 504, 012021. [Google Scholar] [CrossRef]
- Moller, C. Les Theories Relativistes de la Gravitation, Colloques Internationaux CNRX 91; Lichnerowicz, A., Tonnelat, M.-A., Eds.; CNRS: Paris, France, 1962. [Google Scholar]
- Rosenfeld, L. On Quantization of Fields. Nucl. Phys. 1963, 40, 353. [Google Scholar] [CrossRef]
- Wald, R.M. The Backreaction Effect in Particle Creation in Curved Spacetime. Comm. Math. Phys. 1977, 54, 1. [Google Scholar] [CrossRef]
- Wald, R.M. Trace Anomaly of a Conformally Invariant Quantum Field in Curved Spacetime. Phys. Rev. D 1978, 17, 1477. [Google Scholar] [CrossRef]
- Hartle, J.B.; Horowitz, G.T. Ground State expectation Value of the Metric in the 1/N or Semiclassical Approximation to Quantum Gravity. Phys. Rev. D 1981, 24, 257. [Google Scholar] [CrossRef]
- Hu, B.L.; Verdaguer, E. Stochastic gravity: Theory and Applications. Living Rev. Relativ. 2008, 11, 3. [Google Scholar] [CrossRef]
- Hu, B.L.; Verdaguer, E. Semiclassical and Stochastic Gravity—Quantum Field Effects on Curved Spacetimes; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Calzetta, E.A.; Hu, B.L. Noise and Fluctuations in Semiclassical Gravity. Phys. Rev. D 1994, 49, 6636. [Google Scholar] [CrossRef]
- Feynman, R.P.; Vernon, F.L. The Theory of a General Quantum System Interacting with a Linear Dissipative System. Ann. Phys. 1963, 24, 118. [Google Scholar] [CrossRef]
- Phillips, N.G.; Hu, B.L. Noise Kernel in Stochastic Gravity and Stress Energy Bi-Tensor of Quantum Fields in Curved Spacetimes. Phys. Rev. D 2001, 63, 104001. [Google Scholar] [CrossRef]
- Osborn, H.; Shore, G.M. Correlation Functions of the Energy-Momentum Tensor on Spaces of Constant Curvature. Nucl. Phys. B 2000, 571, 287. [Google Scholar] [CrossRef]
- Hu, B.L.; Matacz, A. Back Reaction in Semiclassical Cosmology: The Einstein–Langevin Equation. Phys. Rev. D 1995, 51, 1577. [Google Scholar] [CrossRef] [PubMed]
- Calzetta, E.A.; Campos, A.; Verdaguer, E. Stochastic Semiclassical Cosmological Models. Phys. Rev. D 1997, 56, 2163. [Google Scholar] [CrossRef]
- Lombardo, F.C.; Mazzitelli, F.D. Einstein–Langevin Equations from Running Coupling Constants. Phys. Rev. D 1997, 55, 3889. [Google Scholar] [CrossRef]
- Martín, R.; Verdaguer, E. On the semiclassical Einstein–Langevin Equation. Phys. Lett. B 1999, 465, 113. [Google Scholar] [CrossRef][Green Version]
- Martín, R.; Verdaguer, E. Stochastic Semiclassical Gravity. Phys. Rev. D 1999, 60, 084008. [Google Scholar] [CrossRef]
- Martín, R.; Verdaguer, E. Stochastic Semiclassical Fluctuations in Minkowski Spacetime. Phys. Rev. D 2000, 61, 1. [Google Scholar] [CrossRef]
- Roura, A.; Verdaguer, E. Cosmological Perturbations from Stochastic Gravity. Phys. Rev. D 2008, 78, 064010. [Google Scholar] [CrossRef]
- Flanagan, E.E.; Wald, R.M. Does Back Reaction Enforce the Averaged Null energy Condition in Semiclassical Gravity? Phys. Rev. D 1996, 54, 6233. [Google Scholar] [CrossRef]
- Hu, B.L.; Roura, A.; Verdaguer, E. Induced Quantum Metric Fluctuations and the Validity of Semiclassical Gravity. Phys. Rev. D 2004, 70, 1. [Google Scholar] [CrossRef]
- Hu, B.L.; Roura, A.; Verdaguer, E. Stability of Semiclassical Gravity Solutions with Respect to Quantum Metric Fluctuations. Int. J. Theor. Phys. 2004, 43, 749. [Google Scholar] [CrossRef]
- Bera, S.; Mohan, R.; Singh, T.P. Stochastic Modification of the Schrödinger–Newton Equation. Phys. Rev. D 2015, 92, 025054. [Google Scholar] [CrossRef]
- Bera, S.; Giri, P.; Singh, T.P. Spacetime Fluctuations and a Stochastic Schrödinger–Newton Equation. Found. Phys. 2017, 47, 897. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anastopoulos, C.; Hu, B.-L. Gravity, Quantum Fields and Quantum Information: Problems with Classical Channel and Stochastic Theories. Entropy 2022, 24, 490. https://doi.org/10.3390/e24040490
Anastopoulos C, Hu B-L. Gravity, Quantum Fields and Quantum Information: Problems with Classical Channel and Stochastic Theories. Entropy. 2022; 24(4):490. https://doi.org/10.3390/e24040490
Chicago/Turabian StyleAnastopoulos, Charis, and Bei-Lok Hu. 2022. "Gravity, Quantum Fields and Quantum Information: Problems with Classical Channel and Stochastic Theories" Entropy 24, no. 4: 490. https://doi.org/10.3390/e24040490
APA StyleAnastopoulos, C., & Hu, B.-L. (2022). Gravity, Quantum Fields and Quantum Information: Problems with Classical Channel and Stochastic Theories. Entropy, 24(4), 490. https://doi.org/10.3390/e24040490