Hybrid Beamforming Design for Self-Interference Cancellation in Full-Duplex Millimeter-Wave MIMO Systems with Dynamic Subarrays
Abstract
:1. Introduction
- We introduce the DSs to the FD mmWave MIMO systems, where the BS and users are equipped with multiple antennas, adopt the DSs, and support multi-stream communications. To the best of our knowledge, the hybrid beamforming design for the considered system has not been well investigated.
- We propose an effective three-step hybrid beamforming design based on SI cancellation for the considered system. In the first step, under the assumption of no SI, we obtain the optimal fully digital solutions using the singular value decomposition (SVD) of the uplink (UL) and downlink (DL) channels and the water-filling power allocation algorithm. In the second step, we leverage the Kuhn–Munkres-assisted dynamic hybrid beamforming design to decompose every obtained fully digital solution into an analog component corresponding to the DS and a digital component. In the third step, we first establish the equivalent SI channel and then project the digital beamformer at BS onto the null space of the equivalent SI channel to null out the SI.
- We analyze the computational complexity of the proposed three-step hybrid beamforming design. Numerical results validate that the FD mmWave MIMO system with DSs using the proposed hybrid beamforming design can achieve better SE and EE compared to the systems with FSs and the HD mmWave system.
2. System Model and Problem Formulation
2.1. System Model
2.2. Channel Model
2.3. Dynamic Subarrays
2.4. Problem Formulation
3. Proposed SI Cancellation Based Hybrid Beamforming Design
3.1. The First Step—Fully Digital Beamforming When Assuming No SI
3.2. The Second Step—Hybrid Beamforming for the Dynamic Subarrays When Assuming No SI
3.2.1. Analog Beamformer Design
3.2.2. Digital Beamformer Design
3.3. The Third Step—Null Space Projection to Cancel the SI
Algorithm 1: The Proposed Three-Step Hybrid Beamforming Design for SI Cancellation in the FD mmWave MIMO Systems with DSs |
|
3.4. Computational Complexity Analysis
4. Numerical Results
4.1. Spectral Efficiency
4.2. Energy Efficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heath, R.W.; González-Prelcic, N.; Rangan, S.; Roh, W.; Sayeed, A.M. An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems. IEEE J. Sel. Top. Signal Process. 2016, 10, 436–453. [Google Scholar] [CrossRef]
- Boccardi, F.; Heath, R.W.; Lozano, A.; Marzetta, T.L.; Popovski, P. Five Disruptive Technology Directions for 5G. IEEE Commun. Mag. 2014, 52, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G.N.; Schulz, J.K.; Samimi, M.; Gutierrez, F. Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! IEEE Access 2013, 1, 335–349. [Google Scholar] [CrossRef]
- Xiao, M.; Mumtaz, S.; Huang, Y.; Dai, L.; Li, Y.; Matthaiou, M.; Karagiannidis, G.K.; Björnson, E.; Yang, K.; I, C.L.; et al. Millimeter Wave Communications for Future Mobile Networks. IEEE J. Sel. Areas Commun. 2017, 35, 1909–1935. [Google Scholar] [CrossRef] [Green Version]
- Sabharwal, A.; Schniter, P.; Guo, D.; Bliss, D.W.; Rangarajan, S.; Wichman, R. In-Band Full-Duplex Wireless: Challenges and Opportunities. IEEE J. Sel. Areas Commun. 2014, 32, 1637–1652. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Xia, P.; Xia, X. Full-Duplex Millimeter-Wave Communication. IEEE Wirel. Commun. 2017, 24, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Roberts, I.P.; Andrews, J.G.; Jain, H.B.; Vishwanath, S. Millimeter-Wave Full Duplex Radios: New Challenges and Techniques. IEEE Wirel. Commun. 2021, 28, 36–43. [Google Scholar] [CrossRef]
- Skouroumounis, C.; Psomas, C.; Krikidis, I. Full Duplex Millimeter-Wave Cellular Networks: A Macroscopic Point-of-View. IEEE Netw. 2020, 35, 270–277. [Google Scholar] [CrossRef]
- Yadav, A.; Dobre, O.A. All Technologies Work Together for Good: A Glance at Future Mobile Networks. IEEE Wirel. Commun. 2018, 25, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Alkhateeb, A.; Mo, J.; Gonzalez-Prelcic, N.; Heath, R.W. MIMO Precoding and Combining Solutions for Millimeter-Wave Systems. IEEE Commun. Mag. 2014, 52, 122–131. [Google Scholar] [CrossRef]
- Ayach, O.E.; Rajagopal, S.; Abu-Surra, S.; Pi, Z.; Heath, R.W. Spatially Sparse Precoding in Millimeter Wave MIMO Systems. IEEE Trans. Wirel. Commun. 2014, 13, 1499–1513. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Shen, J.; Zhang, J.; Letaief, K.B. Alternating Minimization Algorithms for Hybrid Precoding in Millimeter Wave MIMO Systems. IEEE J. Sel. Top. Signal Process. 2016, 10, 485–500. [Google Scholar] [CrossRef] [Green Version]
- Shi, Q.; Hong, M. Spectral Efficiency Optimization For Millimeter Wave Multiuser MIMO Systems. IEEE J. Sel. Top. Signal Process. 2018, 12, 455–468. [Google Scholar] [CrossRef] [Green Version]
- Gong, T.; Shlezinger, N.; Ioushua, S.S.; Namer, M.; Yang, Z.; Eldar, Y.C. RF Chain Reduction for MIMO Systems: A Hardware Prototype. IEEE Syst. J. 2020, 14, 5296–5307. [Google Scholar] [CrossRef] [Green Version]
- El Ayach, O.; Heath, R.W.; Rajagopal, S.; Pi, Z. Multimode Precoding in Millimeter Wave MIMO Transmitters with Multiple Antenna Sub-Arrays. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Atlanta, GA, USA, 9–13 December 2013; pp. 3476–3480. [Google Scholar] [CrossRef]
- Gao, X.; Dai, L.; Han, S.; I, C.; Heath, R.W. Energy-Efficient Hybrid Analog and Digital Precoding for MmWave MIMO Systems With Large Antenna Arrays. IEEE J. Sel. Areas Commun. 2016, 34, 998–1009. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Alkhateeb, A.; Heath, R.W. Dynamic Subarrays for Hybrid Precoding in Wideband mmWave MIMO Systems. IEEE Trans. Wirel. Commun. 2017, 16, 2907–2920. [Google Scholar] [CrossRef]
- Li, H.; Li, M.; Liu, Q.; Swindlehurst, A.L. Dynamic Hybrid Beamforming with Low-Resolution PSs for Wideband mmWave MIMO-OFDM Systems. IEEE J. Sel. Areas Commun. 2020, 38, 2168–2181. [Google Scholar] [CrossRef]
- Xu, K.; Zheng, F.C.; Cao, P.; Xu, H.; Zhu, X. A Low Complexity Greedy Algorithm for Dynamic Subarrays in mmWave MIMO Systems. In Proceedings of the IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Jing, X.; Li, L.; Liu, H.; Li, S. Dynamically Connected Hybrid Precoding Scheme for Millimeter-Wave Massive MIMO Systems. IEEE Commun. Lett. 2018, 22, 2583–2586. [Google Scholar] [CrossRef]
- Wang, G.; Yang, Z.; Gong, T. Hybrid Beamforming Design for Millimeter Wave Multiuser MIMO Systems with Dynamic Subarrays. arXiv 2022, arXiv:2205.03206. [Google Scholar]
- Kolodziej, K.E. In-Band Full-Duplex Wireless Systems Overview. In Proceedings of the ICC 2021—IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Duarte, M.; Dick, C.; Sabharwal, A. Experiment-Driven Characterization of Full-Duplex Wireless Systems. IEEE Trans. Wirel. Commun. 2012, 11, 4296–4307. [Google Scholar] [CrossRef] [Green Version]
- Bharadia, D.; McMilin, E.; Katti, S. Full Duplex Radios. In Proceedings of the ACM SIGCOMM Conf. (SigComm), Hong Kong, China, 12–16 August 2013; pp. 375–386. [Google Scholar] [CrossRef]
- Korpi, D.; Tamminen, J.; Turunen, M.; Huusari, T.; Choi, Y.; Anttila, L.; Talwar, S.; Valkama, M. Full-duplex Mobile Device: Pushing the Limits. IEEE Commun. Mag. 2016, 54, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.; Mondal, S.; Gadre, A.; Srivastava, M.; Paramesh, J.; Kumar, S. Millimeter-Wave Full Duplex Radios. In Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, London, UK, 21–25 September 2020. [Google Scholar] [CrossRef]
- Everett, E.; Shepard, C.; Zhong, L.; Sabharwal, A. SoftNull: Many-Antenna Full-Duplex Wireless via Digital Beamforming. IEEE Trans. Commun. 2016, 15, 8077–8092. [Google Scholar] [CrossRef]
- Riihonen, T.; Werner, S.; Wichman, R. Mitigation of Loopback Self-Interference in Full-Duplex MIMO Relays. IEEE Trans. Signal Process. 2011, 59, 5983–5993. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, Z.; Bai, L.; Choi, J.; Xia, P.; Xia, X. Beamforming Based Full-Duplex for Millimeter-Wave Communication. Sensors 2016, 16, 1130. [Google Scholar] [CrossRef] [PubMed]
- López-Valcarce, R.; González-Prelcic, N. Analog Beamforming for Full-Duplex Millimeter Wave Communication. In Proceedings of the International Symposium on Wireless Communication Systems (ISWCS), Oulu, Finland, 27–30 August 2019; pp. 687–691. [Google Scholar] [CrossRef]
- López-Valcarce, R.; Martínez-Cotelo, M. Analog Beamforming for Full-Duplex mmWave Communication with Low-Resolution Phase Shifters. In Proceedings of the IEEE IEEE International Conference on Communications (ICC), Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Satyanarayana, K.; El-Hajjar, M.; Kuo, P.; Mourad, A.; Hanzo, L. Hybrid Beamforming Design for Full-Duplex Millimeter Wave Communication. IEEE Trans. Veh. Technol. 2019, 68, 1394–1404. [Google Scholar] [CrossRef] [Green Version]
- López-Valcarce, R.; Martínez-Cotelo, M. Full-Duplex mmWave Communication with Hybrid Precoding and Combining. In Proceedings of the European Signal Processing Conference (EUSIPCO), Amsterdam, The Netherlands, 18–22 January 2021; pp. 1752–1756. [Google Scholar] [CrossRef]
- Palacios, J.; Rodriguez-Fernandez, J.; Gonzalez-Prelcic, N. Hybrid Precoding and Combining for Full-Duplex Millimeter Wave Communication. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Koc, A.; Le-Ngoc, T. Full-Duplex mmWave Massive MIMO Systems: A Joint Hybrid Precoding/Combining and Self-Interference Cancellation Design. IEEE Open J. Commun. Soc. 2021, 2, 754–774. [Google Scholar] [CrossRef]
- López-Valcarce, R.; Martínez-Cotelo, M. Full-Duplex mmWave MIMO with Finite-Resolution Phase Shifters. IEEE Trans. Wirel. Commun. 2022, 21, 8979–8994. [Google Scholar] [CrossRef]
- Roberts, I.P.; Vishwanath, S. Beamforming Cancellation Design for Millimeter-Wave Full-Duplex. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Roberts, I.P.; Jain, H.B.; Vishwanath, S. Equipping Millimeter-Wave Full-Duplex with Analog Self-Interference Cancellation. In Proceedings of the IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Roberts, I.P.; Jain, H.B.; Vishwanath, S. Frequency-Selective Beamforming Cancellation Design for Millimeter-Wave Full-Duplex. In Proceedings of the ICC 2020–2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Roberts, I.P.; Andrews, J.G.; Vishwanath, S. Hybrid Beamforming for Millimeter Wave Full-Duplex Under Limited Receive Dynamic Range. IEEE Trans. Wirel. Commun. 2021, 20, 7758–7772. [Google Scholar] [CrossRef]
- da Silva, J.M.B.; Sabharwal, A.; Fodor, G.; Fischione, C. Low Resolution Phase Shifters Suffice for Full-Duplex mmWave Communications. In Proceedings of the International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar] [CrossRef]
- da Silva, J.M.B.; Sabharwal, A.; Fodor, G.; Fischione, C. 1-bit Phase Shifters for Large-Antenna Full-Duplex mmWave Communications. IEEE Trans. Wirel. Commun. 2020, 19, 6916–6931. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, M.; Han, S.; Skoglund, M.; Meng, W. On Precoding and Energy Efficiency of Full-Duplex Millimeter-Wave Relays. IEEE Trans. Wirel. Commun. 2019, 18, 1943–1956. [Google Scholar] [CrossRef]
- Luo, Z.; Zhao, L.; Tonghui, L.; Liu, H.; Zhang, R. Robust Hybrid Precoding/Combining Designs for Full-Duplex Millimeter Wave Relay Systems. IEEE Trans. Veh. Technol. 2021, 70, 9577–9582. [Google Scholar] [CrossRef]
- Wang, G.; Yang, Z.; Gong, T.; Xie, C. Self-Interference Cancellation Based Hybrid Beamforming Design for Full-Duplex mmWave Communication with Partially-Connected Structures. In Proceedings of the IEEE International Conference on Communication Technology (ICCT), Nanning, China, 28–31 October 2020; pp. 366–371. [Google Scholar] [CrossRef]
- Zhao, M.M.; Cai, Y.; Zhao, M.J.; Xu, Y.; Hanzo, L. Robust Joint Hybrid Analog-Digital Transceiver Design for Full-Duplex mmWave Multicell Systems. IEEE Trans. Commun. 2020, 68, 4788–4802. [Google Scholar] [CrossRef]
- Saleh, A.A.M.; Valenzuela, R. A Statistical Model for Indoor Multipath Propagation. IEEE J. Sel. Areas Commun. 1987, 5, 128–137. [Google Scholar] [CrossRef]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar] [CrossRef]
- Tse, D.; Viswanath, P. Fundamentals of Wireless Communication; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar] [CrossRef]
- Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming, Version 2.0 beta. Available online: http://cvxr.com/cvx (accessed on 20 September 2013).
- Akdeniz, M.R.; Liu, Y.; Samimi, M.K.; Sun, S.; Rangan, S.; Rappaport, T.S.; Erkip, E. Millimeter Wave Channel Modeling and Cellular Capacity Evaluation. IEEE J. Sel. Areas Commun. 2014, 32, 1164–1179. [Google Scholar] [CrossRef]
- Méndez-Rial, R.; Rusu, C.; González-Prelcic, N.; Alkhateeb, A.; Heath, R.W. Hybrid MIMO Architectures for Millimeter Wave Communications: Phase Shifters or Switches? IEEE Access 2016, 4, 247–267. [Google Scholar] [CrossRef]
Methods | Computational Complexity |
---|---|
BFC_FCS | |
SIC_FS | |
Proposed |
Parameters | Values |
---|---|
Carrier frequency and wavelength , | |
Number of clusters and rays , | [6, 15] |
AoAs / AoDs | |
Angular spread of rays in the same cluster | |
Distance between BS and MS1 (MS2) | |
Path loss | [51] |
Distance and angles between antenna arrays at FD BS , | |
Rician factor | |
Number of antennas , , , | |
Number of RF chains , , , | |
Number of data streams | 3 |
Maximum transmit powers , | |
Number of Monte Carlo simulations | 500 |
mmWave Structures | Total Power Consumption |
---|---|
FCSs | |
FSs | |
DSs |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Yang, Z.; Gong, T. Hybrid Beamforming Design for Self-Interference Cancellation in Full-Duplex Millimeter-Wave MIMO Systems with Dynamic Subarrays. Entropy 2022, 24, 1687. https://doi.org/10.3390/e24111687
Wang G, Yang Z, Gong T. Hybrid Beamforming Design for Self-Interference Cancellation in Full-Duplex Millimeter-Wave MIMO Systems with Dynamic Subarrays. Entropy. 2022; 24(11):1687. https://doi.org/10.3390/e24111687
Chicago/Turabian StyleWang, Gengshan, Zhijia Yang, and Tierui Gong. 2022. "Hybrid Beamforming Design for Self-Interference Cancellation in Full-Duplex Millimeter-Wave MIMO Systems with Dynamic Subarrays" Entropy 24, no. 11: 1687. https://doi.org/10.3390/e24111687
APA StyleWang, G., Yang, Z., & Gong, T. (2022). Hybrid Beamforming Design for Self-Interference Cancellation in Full-Duplex Millimeter-Wave MIMO Systems with Dynamic Subarrays. Entropy, 24(11), 1687. https://doi.org/10.3390/e24111687