Better Heisenberg Limits, Coherence Bounds, and Energy-Time Tradeoffs via Quantum Rényi Information
Abstract
:1. Introduction
2. Metrology Bounds, Heisenberg Limit and Uncertainty Relations via Rényi Entropies
2.1. Definition of Rényi Entropies and Rényi Lengths
2.2. Entropic Tradeoff Relation for Phase Estimation
2.3. Lower Bounds for RMSE, a Strong Heisenberg Limit, and Number-Phase Uncertainty Relations
3. Stronger Metrology Bounds and Uncertainty Relations via Sandwiched Rényi Relative Entropies and Asymmetry
3.1. Setting the Scene: The Case of Standard Entropies
3.2. Sandwiched Rényi Relative Entropy and Mutual Information
3.3. Rényi Asymmetry and Upper Bounds for Mutual Information
3.4. A Convolution Lower Bound for Mutual Information
3.5. Putting It All Together: Strengthened Metrology Bounds and Uncertainty Relations
4. Applications to Coherence Measures, Rotations, and Energy-Time Tradeoffs
4.1. Coherence Bounds
4.2. Rotations
4.3. Energy and Time
5. Discussion
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
References
- Coles, P.J.; Berta, M.; Tomamichel, M.; Wehner, S. Entropic uncertainty relations and their applications. Rev. Mod. Phys. 2017, 89, 015002. [Google Scholar] [CrossRef] [Green Version]
- Bialynicki-Birula, I.; Mycielski, J. Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys. 1975, 44, 129. [Google Scholar] [CrossRef]
- Frank, R.L.; Lieb, E.H. Entropy and the uncertainty principle. Ann. Henri Poincaré 2012, 13, 1711–1717. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.J.W.; Wiseman, H.M. Does nonlinear metrology offer improved resolution? Answers from quantum information theory. Phys. Rev. X 2012, 2, 041006. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.J.W.; Berry, D.W.; Zwierz, M.; Wiseman, H.M. Universality of the Heisenberg limit for estimates of random phase shifts. Phys. Rev. A 2012, 85, 041802(R). [Google Scholar] [CrossRef] [Green Version]
- Nair, R. Fundamental quantum limits in optical metrology from rate-distortion theory. J. Phys. A 2018, 51, 434001. [Google Scholar] [CrossRef] [Green Version]
- Berry, D.W.; Tsang, M.; Hall, M.J.W.; Wiseman, H.M. Quantum Bell-Ziv-Zakai bounds and Heisenberg limits for waveform estimation. Phys. Rev. X 2015, 5, 031018. [Google Scholar] [CrossRef] [Green Version]
- Maassen, H.; Uffink, J.B.M. Generalized entropic uncertainty relations. Phys. Rev. Lett. 2008, 60, 1103–1106. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I. Formulation of the uncertainty relations in terms of the Rényi entropies. Phys. Rev. A 2006, 74, 052101. [Google Scholar] [CrossRef] [Green Version]
- Damgård, I.B.; Fehr, S.; Renner, R.; Salvail, L.; Schaffner, C. A Tight High-Order Entropic Quantum Uncertainty Relation with Applications. In Advances in Cryptology—CRYPTO 2007; Menezes, A., Ed.; Springer: Berlin, Germany, 2007; pp. 360–378. [Google Scholar] [CrossRef]
- Kriváchy, T.; Fröwis, F.; Brunner, N. Tight steering inequalities from generalized entropic uncertainty relations. Phys. Rev. A 2018, 98, 062111. [Google Scholar] [CrossRef] [Green Version]
- Sibson, R. Information radius. Z. Wahrscheinlichkeitstheorie Verwandte Geb. 1969, 14, 149–160. [Google Scholar] [CrossRef]
- Ho, S.W.; Verdú, S. Convexity/concavity of the Rényi entropy and α-mutual information. In Proceedings of the 2015 IEEE International Symposium on Information Theory, Hong Kong, China, 14–19 June 2015; pp. 745–749. [Google Scholar] [CrossRef]
- Wilde, M.M.; Winter, A.; Yang, D. Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy. Commun. Math. Phys. 2014, 331, 593–622. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, M.; Tomamichel, M. Correlation Detection and an Operational Interpretation of the Rényi Mutual Information. J. Math. Phys. 2016, 57, 102201. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Junge, M.; LaRacuente, N. Unifying entanglement with uncertainty via symmetries of observable algebras. arXiv 2017, arXiv:1710.10038. [Google Scholar]
- Coles, P.J.; Katariya, V.; Lloyd, S.; Marvian, I.; Wilde, M.M. Entropic energy-time uncertainty relation. Phys. Rev. Lett. 2019, 122, 100401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chitambar, E.; Gour, G. Comparison of incoherent operations and measures of coherence. Phys. Rev. A 2016, 94, 052336. [Google Scholar] [CrossRef] [Green Version]
- Streltsov, A.; Adesso, G.; Plenio, M.B. Colloquium: Quantum coherence as a resource. Rev. Mod. Phys. 2017, 89, 041003. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.J.W. Almost-periodic time observables for bound quantum systems. J. Phys. A 2008, 41, 255301. [Google Scholar] [CrossRef] [Green Version]
- Helstrom, C.W. Estimation of a displacement parameter of a quantum system. Int. J. Theor. Phys. 1974, 11, 357–378. [Google Scholar] [CrossRef]
- Holevo, A.S. Probabilistic and Statistical Aspects of Quantum Theory; North-Holland: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Hall, M.J.W. Universal geometric approach to uncertainty, entropy, and information. Phys. Rev. A 1999, 59, 2602–2615. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.J.W. Phase resolution and coherent phase states. J. Mod. Opt. 1993, 40, 809–824. [Google Scholar] [CrossRef]
- Boixo, S.; Flammia, S.T.; Caves, C.M.; Geremia, J.M. Generalized limits for single-parameter quantum estimation. Phys. Rev. Lett. 2007, 98, 090401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, M.J.W. Metrology with entangled coherent states—A quantum scaling paradox. In Proceedings of the First International Workshop on Entangled Coherent States and Its Application to Quantum Information Science, 2013; Usuda, T.S., Kato, K., Eds.; Tamagawa University Quantum ICT Research Institute: Tokyo, Japan, 2013; pp. 19–26. Available online: https://www.tamagawa.jp/research/quantum/discourse/ (accessed on 26 October 2022).
- Bandilla, A.; Paul, H.; Ritze, H.-H. Realistic quantum states of light with minimum phase uncertainty. Quantum Opt. 1991, 3, 267–282. [Google Scholar] [CrossRef]
- Berry, D.W.; Hall, M.J.W.; Zwierz, M.; Wiseman, H.M. Optimal Heisenberg-style bounds for the average performance of arbitrary phase estimates. Phys. Rev. A 2012, 86, 053813. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.J.W.; Wiseman, H.M. Heisenberg-style bounds for arbitrary estimates of shift parameters including prior information. New J. Phys. 2012, 14, 033040. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information, 10th Anniv. ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Yuen, H.P.; Ozawa, M. Ultimate information carrying limit of quantum systems. Phys. Rev. Lett. 1993, 70, 363–366. [Google Scholar] [CrossRef]
- Vaccaro, J.A. Group theoretic formulation of complementarity. In Proceedings of the 8th International Conference on Quantum Communication, Measurement and Computing, Tsukuba, Japan, 28 November–3 December 2006; Hirota, O., Shapiro, J.H., Sasaki, M., Eds.; NICT Press: Tokyo, Japan, 2006; pp. 421–424. [Google Scholar]
- Vaccaro, J.A.; Anselmi, F.; Wiseman, H.M.; Jacobs, K. Tradeoff between extractable mechanical work, accessible entanglement, and ability to act as a reference system, under arbitrary superselection rules. Phys. Rev. A 2008, 77, 032114. [Google Scholar] [CrossRef] [Green Version]
- Gour, G.; Marvian, I.; Spekkens, R.W. Measuring the quality of a quantum reference frame: The relative entropy of frameness. Phys. Rev. A 2009, 80, 012307. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.J.W. Entropic Heisenberg limits and uncertainty relations from the Holevo information bound. J. Phys. A 2018, 51, 364001. [Google Scholar] [CrossRef]
- Sharma, N.; Warsi, N.A. On the strong converses for the quantum channel capacity theorems. arXiv 2012, arXiv:1205.1712. [Google Scholar]
- Rényi, A. On measures of entropy and information. In Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, Berkeley, CA, USA, 20–30 June 1961; Neyman, J., Ed.; University of California Press: Berkeley, CA, USA, 1961; pp. 547–561. Available online: https://projecteuclid.org/ebook/Download?urlid=bsmsp/1200512181&isFullBook=false (accessed on 26 October 2022).
- Van Erven, T.; Harremos, P. Rényi divergence and Kullback–Leibler divergence. IEEE Trans. Inf. Theory 2014, 60, 3797–3820. [Google Scholar] [CrossRef] [Green Version]
- Müller-Lennert, M.; Dupuis, F.; Szehr, O.; Fehr, S.; Tomamichel, M. On quantum Rényi entropies: A new generalization and some properties. J. Math. Phys. 2013, 54, 122203. [Google Scholar] [CrossRef] [Green Version]
- Frank, R.L.; Lieb, E.H. Monotonicity of a relative Rényi entropy. J. Math. Phys. 2013, 54, 122201. [Google Scholar] [CrossRef] [Green Version]
- Beigi, S. Sandwiched Rényi divergence satisfies data processing inequality. J. Math. Phys. 2013, 54, 122202. [Google Scholar] [CrossRef] [Green Version]
- Mosonyi, M.; Ogawa, T. Quantum hypothesis testing and the operational interpretation of the quantum Rényi relative entropies. Commun. Math. Phys. 2015, 334, 1617–1648. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 623–656. [Google Scholar] [CrossRef]
- Uhlmann, A. Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory. Commun. Math. Phys. 1977, 54, 21–32. [Google Scholar] [CrossRef]
- Korzekwa, K.; Lostaglio, M.; Jennings, D.; Rudolph, T. Quantum and classical entropic uncertainty relations. Phys. Rev. A 2014, 89, 042122. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.J.; Chen, B.; Li, M.; Fei, S.M.; Long, G.L. Estimation on geometric measure of quantum coherence. Commun. Theor. Phys. 2017, 67, 166–170. [Google Scholar] [CrossRef]
- Piani, M.; Cianciaruso, M.; Bromley, T.R.; Napoli, C.; Johnston, N.; Adesso, G. Robustness of asymmetry and coherence of quantum states. Phys. Rev. A 2016, 93, 042107. [Google Scholar] [CrossRef]
- Tóth, G.; Apellaniz, I. Quantum metrology from a quantum information science perspective. J. Phys. A 2014, 47, 424006. [Google Scholar] [CrossRef] [Green Version]
- Rastegin, A.E. On entropic uncertainty relations for measurements of energy and its “complement”. Ann. Phys. 2019, 531, 1800466. [Google Scholar] [CrossRef] [Green Version]
- Besicovitch, A.S. Almost Periodic Functions; Dover: New York, NY, USA, 1954; pp. 1–109. [Google Scholar]
- Hall, M.J.W.; Pegg, D.T. Comment on “Quantum phase for an arbitrary system with finite-dimensional Hilbert space”. Phys. Rev. A 2012, 86, 056101. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.L. Quantum versus classical uncertainty. Theor. Math. Phys. 2005, 143, 681–688. [Google Scholar] [CrossRef]
- Costa, J.; Hero, A.; Vignat, C. On solutions to multivariate maximum α-entropy problems. In Proceedings of the International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, Lisbon, Portugal, 7–9 July 2003; Rangarajan, A., Figueiredo, M., Zerubia, J., Eds.; Springer: Berlin, Germany, 2003; pp. 211–226. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hall, M.J.W. Better Heisenberg Limits, Coherence Bounds, and Energy-Time Tradeoffs via Quantum Rényi Information. Entropy 2022, 24, 1679. https://doi.org/10.3390/e24111679
Hall MJW. Better Heisenberg Limits, Coherence Bounds, and Energy-Time Tradeoffs via Quantum Rényi Information. Entropy. 2022; 24(11):1679. https://doi.org/10.3390/e24111679
Chicago/Turabian StyleHall, Michael J. W. 2022. "Better Heisenberg Limits, Coherence Bounds, and Energy-Time Tradeoffs via Quantum Rényi Information" Entropy 24, no. 11: 1679. https://doi.org/10.3390/e24111679
APA StyleHall, M. J. W. (2022). Better Heisenberg Limits, Coherence Bounds, and Energy-Time Tradeoffs via Quantum Rényi Information. Entropy, 24(11), 1679. https://doi.org/10.3390/e24111679