Research on Joint Resource Allocation for Multibeam Satellite Based on Metaheuristic Algorithms
Abstract
:1. Introduction
2. Problem Formulation
2.1. Joint Resource Allocation Problem Model
2.2. Link Budget Model
3. Constraint Handling Method
3.1. Unused Bandwidth Allocation
- (1)
- With a probability of 0.5, the starting beam is selected as 1 or . The beam pair is expressed as follows:
- (2)
- For each pair of beams , if is satisfied, the operation is performed in order to ensure that constraint is satisfied; however, some bandwidth may be unused.
- (3)
- The beams are ordered from largest to smallest based on the demand. The serial number sequence is denoted as .
3.2. Non-Dominated Beam Coding
3.3. Complexity Analysis and General Application Architecture
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ippolito, L.J. Satellite Communications Systems Engineering: Atmospheric Effects on Satellite Link Design and Performance, 2nd ed.; John Wiley & Sons Inc: Chichester, WS, UK, 2017. [Google Scholar]
- Du, J.; Jiang, C.; Zhang, H.; Wang, X.; Ren, Y.; Debbah, M. Secure Satellite-Terrestrial Transmission Over Incumbent Terrestrial Networks via Cooperative Beamforming. IEEE J. Select. Areas Commun. 2018, 36, 1367–1382. [Google Scholar] [CrossRef]
- Pachler, N.; Guerster, M. Static Beam Placement and Frequency Plan Algorithms for LEO Constellations. Int. J. Satell. Commun. Netw. 2021, 39, 65–77. [Google Scholar] [CrossRef]
- Du, J.; Jiang, C.; Wang, J.; Ren, Y.; Debbah, M. Machine Learning for 6G Wireless Networks: Carrying Forward Enhanced Bandwidth, Massive Access, and Ultrareliable/Low-Latency Service. IEEE Veh. Technol. Mag. 2020, 15, 122–134. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, C.; Kuang, L. Iterative NOMA Detection for Multiple Access in Satellite High-Mobility Communications. IEEE J. Select. Areas Commun. 2022, 40, 1101–1113. [Google Scholar] [CrossRef]
- Guerster, M.; Luis, J.J.G.; Crawley, E.; Cameron, B. Problem Representation of Dynamic Resource Allocation for Flexible High Throughput Satellites. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; pp. 1–8. [Google Scholar]
- Cai, H.; Wang, Y. Research on Satellite Beam Hopping Technology Based on Digital Video Broadcast-Satellite Second Generation/Return Channel via Satellite. In Proceedings of the 2022 4th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP), Hangzhou, China, 8–10 July 2022; IEEE: Hangzhou, China, 2022; pp. 859–863. [Google Scholar]
- Choi, J.P.; Chan, V.W.S. Optimum Power and Beam Allocation Based on Traffic Demands and Channel Conditions over Satellite Downlinks. IEEE Trans. Wirel. Commun. 2005, 4, 2983–2993. [Google Scholar] [CrossRef]
- Wang, H.; Liu, A.; Pan, X.; Yang, J. Optimization of Power Allocation for Multiusers in Multi-Spot-Beam Satellite Communication Systems. Math. Probl. Eng. 2014, 2014, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Aravanis, A.I.; Shankar, M.R.B.; Arapoglou, P.-D.; Danoy, G.; Cottis, P.G.; Ottersten, B. Power Allocation in Multibeam Satellite Systems: A Two-Stage Multi-Objective Optimization. IEEE Trans. Wirel. Commun. 2015, 14, 3171–3182. [Google Scholar] [CrossRef]
- Durand, F.R.; Abrão, T. Power Allocation in Multibeam Satellites Based on Particle Swarm Optimization. AEU Int. J. Electron. Commun. 2017, 78, 124–133. [Google Scholar] [CrossRef]
- Luis, J.J.G.; Guerster, M. Deep Reinforcement Learning for Continuous Power Allocation in Flexible High Throughput Satellites. In Proceedings of the 2019 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW), Cleveland, OH, USA, 25–27 June 2019; pp. 1–4. [Google Scholar]
- Luis, J.J.G.; Pachler, N.; Guerster, M. Artificial Intelligence Algorithms for Power Allocation in High Throughput Satellites: A Comparison. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–15. [Google Scholar]
- Takahashi, M.; Kawamoto, Y.; Kato, N.; Miura, A.; Toyoshima, M. DBF-Based Fusion Control of Transmit Power and Beam Directivity for Flexible Resource Allocation in HTS Communication System Toward B5G. IEEE Trans. Wirel. Commun. 2022, 21, 95–105. [Google Scholar] [CrossRef]
- Mizuikjz, T.; It, Y. Optimization of Frequency Assignment. IEEE Trans. Commun. 1989, 37, 1031–1041. [Google Scholar] [CrossRef]
- Park, U.; Kim, H.W.; Oh, D.S.; Ku, B.J. Flexible Bandwidth Allocation Scheme Based on Traffic Demands and Channel Conditions for Multi-Beam Satellite Systems. In Proceedings of the 2012 IEEE Vehicular Technology Conference (VTC Fall), Quebec City, QC, Canada, 3–6 September 2012; pp. 1–5. [Google Scholar]
- Wang, H.; Liu, A.; Pan, X.; Jia, L. Optimal Bandwidth Allocation for Multi-Spot-Beam Satellite Communication Systems; IEEE: Shengyang, China, 2013; pp. 2794–2798. [Google Scholar]
- Hu, X.; Liu, S.; Chen, R.; Wang, W.; Wang, C. A Deep Reinforcement Learning Based Framework for Dynamic Resource Allocation in Multibeam Satellite Systems. IEEE Commun. Lett. 2018, 22, 1612–1615. [Google Scholar] [CrossRef]
- Cocco, G.; de Cola, T.; Angelone, M.; Katona, Z.; Erl, S. Radio Resource Management Optimization of Flexible Satellite Payloads for DVB-S2 Systems. IEEE Trans. Broadcast. 2018, 64, 266–280. [Google Scholar] [CrossRef] [Green Version]
- Paris, A.; Del Portillo, I.; Cameron, B.; Crawley, E. A Genetic Algorithm for Joint Power and Bandwidth Allocation in Multibeam Satellite Systems. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; IEEE: Big Sky, MT, USA, 2019; pp. 1–15. [Google Scholar]
- Pachler, N.; Luis, J.J.G.; Guerster, M.; Crawley, E.; Cameron, B. Allocating Power and Bandwidth in Multibeam Satellite Systems Using Particle Swarm Optimization. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; IEEE: Big Sky, MT, USA, 2020; pp. 1–11. [Google Scholar]
- Abdu, T.S.; Kisseleff, S.; Lagunas, E.; Chatzinotas, S. Flexible Resource Optimization for GEO Multibeam Satellite Communication System. IEEE Trans. Wirel. Commun. 2021, 20, 7888–7902. [Google Scholar] [CrossRef]
- He, Y.; Sheng, B.; Yin, H.; Yan, D.; Zhang, Y. Multi-Objective Deep Reinforcement Learning Based Time-Frequency Resource Allocation for Multi-Beam Satellite Communications. China Commun. 2022, 19, 77–91. [Google Scholar] [CrossRef]
- Gao, W.; Qu, L.; Wang, L. Multi-Objective Optimization of Joint Resource Allocation Problem in Multi-Beam Satellite. In Proceedings of the 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 17–19 June 2022; IEEE: Chongqing, China, 2022; pp. 2331–2338. [Google Scholar]
- Xia, K.; Feng, J.; Yan, C.; Duan, C. BeiDou Short-Message Satellite Resource Allocation Algorithm Based on Deep Reinforcement Learning. Entropy 2021, 23, 932. [Google Scholar] [CrossRef] [PubMed]
- Rinaldo, R.; Gaudenzi, R.D. Capacity Analysis and System Optimization for the Forward Link of Multi-Beam Satellite Broadband Systems Exploiting Adaptive Coding and Modulation. Int. J. Satell. Commun. Netw. 2004, 22, 401–423. [Google Scholar] [CrossRef]
- Maral, G.; Bousquet, M.; Sun, Z. Satellite Communications Systems: Systems, Techniques and Technology, 5th ed.; John Wiley: Chichester, WS, UK, 2009. [Google Scholar]
- Price, K.V. Differential Evolution: A Fast and Simple Numerical Optimizer. In Proceedings of the North American Fuzzy Information Processing, Berkeley, CA, USA, 19–22 June 1996; pp. 524–527. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Sun, J.; Fang, W.; Wu, X.; Palade, V.; Xu, W. Quantum-Behaved Particle Swarm Optimization: Analysis of Individual Particle Behavior and Parameter Selection. Evol. Comput. 2012, 20, 349–393. [Google Scholar] [CrossRef] [PubMed]
- Digital Video Broadcasting (DVB). Second Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting, Interactive Services, News Gathering and Other Broadband Satellite Applications; ETSI EN 302 307 Ver.1.3.1; AFNOR: Paris, France, 2013. [Google Scholar]
- Digital Video Broadcasting (DVB). Implementation Guidelines for the Second Generation System for Broadcasting, Interactive Services, News Gathering and Other Broadband Satellite Applications; Part2-S2 extensions (DVB-S2X); AFNOR: Paris, France, 2015. [Google Scholar]
Degree of Domination | UBA | NDBC |
---|---|---|
0 | 0 | |
1 | 2 | 2 |
2 |
Input:(Demand); Output:,, |
1: /*Initialization*/ 2: /*Non-dominated Beam Coding*/ 3: while iteration < Maximum iterations 4: /* Population Evolution */ 5: for each operator in Algorithm do 6: /*Population Evolution*/ 7: /*Power Constraint Handling*/ 8: end for 9: /*Population Evaluation*/ 10: /*Bandwidth Constraint Handling*/ 11: /*Dominated Beam Bandwidth Calculation*/ 12: /*Beam Data Rate Calculation*/ 13: /*Get Optimal Solution*/ 14: end while 15: Return the final solution |
Parameter | Symbol | Value | Unit |
---|---|---|---|
Total power | 2350 | W | |
Total bandwidth | 375 (×2) | MHz | |
Power maximum | 100 | W | |
Transmit antenna gain | 52.2 | dB | |
Receive antenna gain | 41.5 | dB | |
Free-space path losses | 209 | dB | |
System temperature | 320 | K | |
Roll-off factor | 0.2 | — | |
Link margin | 1.0 | dB | |
Carrier-to-adjacent-beam interference | 36 | dB | |
Carrier-to-adjacent-satellite interference | 28 | dB | |
Carrier-to-cross-polarization interference | 30 | dB | |
Carrier-to-third-order inter-modulation interference | 21 | dB |
GA | GA | DE | DE |
---|---|---|---|
Parameter | Value | Parameter | Value |
Tournament size Blend Alpha Crossover prob. Mutation prob. | 5 0.2 0.95 [0.05, 0.15] | Ini. Mutation Prob. Crossover Prob. | 0.2 0.1 |
PSO | PSO | QPSO | QPSO |
Parameter | Value | Parameter | Value |
Inertia weight Cognitive factor Social factor | [0.2, 1.0] 1.0 1.0 | Systolic-expansion factor | [0.01, 0.8] |
Algorithm | Result | GA | DE | PSO | QPSO |
---|---|---|---|---|---|
UBA | Worst run | 1.115 | 1.016 | 0.986 | 1.538 |
Average run | 0.958 | 0.826 | 0.807 | 1.006 | |
Best run | 0.768 | 0.636 | 0.671 | 0.741 | |
Standard deviation | 62.28 | 73.28 | 45.16 | 115.21 | |
Average execution time | 5.16 | 4.39 | 4.16 | 2.77 | |
Average iteration | 248.96 | 423.58 | 314.27 | 216.39 | |
NDBC | Worst run | 1.026 | 0.912 | 0.853 | 0.798 |
Average run | 0.866 | 0.749 | 0.686 | 0.641 | |
Best run | 0.709 | 0.606 | 0.623 | 0.576 | |
Standard deviation | 64.53 | 65.65 | 46.74 | 46.80 | |
Average execution time | 4.02 | 2.66 | 3.57 | 2.23 | |
Average iteration | 220.02 | 292.45 | 321.13 | 214.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, W.; Wang, L.; Qu, L. Research on Joint Resource Allocation for Multibeam Satellite Based on Metaheuristic Algorithms. Entropy 2022, 24, 1536. https://doi.org/10.3390/e24111536
Gao W, Wang L, Qu L. Research on Joint Resource Allocation for Multibeam Satellite Based on Metaheuristic Algorithms. Entropy. 2022; 24(11):1536. https://doi.org/10.3390/e24111536
Chicago/Turabian StyleGao, Wei, Lei Wang, and Lianzheng Qu. 2022. "Research on Joint Resource Allocation for Multibeam Satellite Based on Metaheuristic Algorithms" Entropy 24, no. 11: 1536. https://doi.org/10.3390/e24111536
APA StyleGao, W., Wang, L., & Qu, L. (2022). Research on Joint Resource Allocation for Multibeam Satellite Based on Metaheuristic Algorithms. Entropy, 24(11), 1536. https://doi.org/10.3390/e24111536