# Bounds for Coding Theory over Rings

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

^{s}for any positive integer s. For this weight, we provide a number of well-known bounds, including a Singleton bound, a Plotkin bound, a sphere-packing bound and a Gilbert–Varshamov bound. In addition to the overweight, we also study a well-known metric on finite rings, namely the homogeneous metric, which also extends the Lee metric over the integers modulo 4 and is thus heavily connected to the overweight. We provide a new bound that has been missing in the literature for homogeneous metric, namely the Johnson bound. To prove this bound, we use an upper estimate on the sum of the distances of all distinct codewords that depends only on the length, the average weight and the maximum weight of a codeword. An effective such bound is not known for the overweight.

## 1. Introduction

## 2. Preliminaries

**Definition**

**1.**

**Definition**

**2.**

- 1.
- $w\left(0\right)=0$ and $w\left(x\right)>0$ for all $x\ne 0$,
- 2.
- $w\left(x\right)=w(-x)$ for all $x\in R$,
- 3.
- $w(x+y)\le w\left(x\right)+w\left(y\right)$ for all $x,y\in R$,

- 1.
- $d(x,y)\ge 0$ for all $x,y\in R$ and $d(x,y)=0$ if and only if $x=y$.
- 2.
- $d(x,y)=d(y,x)$ for all $x,y\in R$,
- 3.
- $d(x,z)\le d(x,y)+d(y,z)$ for all $x,y,z\in R$.

**Definition**

**3.**

**Definition**

**4.**

**Definition**

**5.**

**Definition**

**6.**

- (i)
- For all $x,y$ with $Rx=Ry$, we have that $w\left(x\right)=w\left(y\right)$.
- (ii)
- For every non-zero ideal $I\le {}_{R}R$, it holds that$$\frac{1}{\left|I\right|}\sum _{x\in I}w\left(x\right)\phantom{\rule{0.277778em}{0ex}}=\phantom{\rule{0.277778em}{0ex}}\gamma .$$

**Theorem**

**1**

**Theorem**

**2**

## 3. Overweight

**Definition**

**7.**

#### Relations to Other Weights

**Proposition**

**1.**

**Proof.**

**Example**

**1.**

**Lemma**

**1.**

## 4. Bounds for the Overweight

**Definition**

**8.**

#### 4.1. A Singleton Bound

**Remark**

**1.**

**Proposition**

**2.**

**Example**

**2.**

**Proposition**

**3.**

**Example**

**3.**

#### 4.2. A Sphere-Packing Bound

**Definition**

**9.**

**Lemma**

**2.**

**Corollary**

**1**

**Corollary**

**2.**

**Proof.**

#### 4.3. A Gilbert–Varshamov Bound

**Proposition**

**4**

**Proof.**

**Example**

**4.**

#### 4.4. A Plotkin Bound

**Lemma**

**3.**

**Proof.**

**Corollary**

**3.**

**Proof.**

**Lemma**

**4.**

**Proof.**

**Proposition**

**5.**

**Proof.**

**Proposition**

**6.**

**Proof.**

**Theorem**

**3**

**Proof.**

**Corollary**

**4.**

**Proof.**

**Remark**

**2.**

**Example**

**5.**

## 5. A Johnson Bound for the Homogeneous Weight

**Definition**

**10.**

**Definition**

**11.**

**Proposition**

**7**

**Theorem**

**4.**

- (i)
- We have that $\gamma \phantom{\rule{0.166667em}{0ex}}n(d-\gamma \phantom{\rule{0.166667em}{0ex}}n)\ge 1$.
- (ii)
- It holds that $\rho \le \gamma -\sqrt{(\gamma -\frac{d}{n})\gamma +\frac{1}{{n}^{2}}}$.

**Proof.**

**Remark**

**3.**

**Example**

**6.**

## 6. Open Problems

**Problem**

**1.**

**Problem**

**2.**

## Author Contributions

## Funding

## Institutional Review Board Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Kerdock, A.M. A class of low-rate nonlinear binary codes. Inf. Control.
**1972**, 20, 182–187. [Google Scholar] [CrossRef] [Green Version] - Preparata, F.P. A class of optimum nonlinear double-error-correcting codes. Inf. Control.
**1968**, 13, 378–400. [Google Scholar] [CrossRef] [Green Version] - Nechaev, A.A. Kerdock’s code in cyclic form. Diskret. Mat.
**1989**, 1, 123–139. [Google Scholar] [CrossRef] - Hammons, A.R., Jr.; Kumar, P.V.; Calderbank, A.R.; Sloane, N.J.A.; Solé, P. The Z
_{4}-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory**1994**, 40, 301–319. [Google Scholar] [CrossRef] - Krotov, D.S. On Z
_{2k}-Dual Binary Codes. IEEE Trans. Inf. Theory**2007**, 53, 1532–1537. [Google Scholar] [CrossRef] - Shi, M.; Wu, R.; Krotov, D.S. On Z
_{pk}-Additive Codes and Their Duality. IEEE Trans. Inf. Theory**2019**, 65, 3841–3847. [Google Scholar] [CrossRef] [Green Version] - Constantinescu, I.; Heise, W. A metric for codes over residue class rings. Probl. Peredachi Informatsii
**1997**, 33, 22–28. [Google Scholar] - Greferath, M.; Schmidt, S.E. Gray isometries for finite chain rings and a nonlinear ternary (36, 3
^{12}, 15) code. IEEE Trans. Inform. Theory**1999**, 45, 2522–2524. [Google Scholar] [CrossRef] - Nechaev, A.A.; Honold, T. Weighted modules and representations of codes. Probl. Peredachi Informatsii
**1999**, 35, 18–39. [Google Scholar] - Greferath, M.; O’Sullivan, M.E. On bounds for codes over Frobenius rings under homogeneous weights. Discret. Math.
**2004**, 289, 11–24. [Google Scholar] [CrossRef] - Bachoc, C. Applications of coding theory to the construction of modular lattices. J. Comb. Theory Ser. A
**1997**, 78, 92–119. [Google Scholar] [CrossRef] [Green Version] - Dougherty, S.T.; Kim, J.L.; Kulosman, H. MDS codes over finite principal ideal rings. Des. Codes Cryptogr.
**2009**, 50, 77–92. [Google Scholar] [CrossRef] - Norton, G.H.; Salagean, A. On the Hamming distance of linear codes over a finite chain ring. IEEE Trans. Inf. Theory
**2000**, 46, 1060–1067. [Google Scholar] [CrossRef] [Green Version] - Byrne, E.; Horlemann, A.L.; Khathuria, K.; Weger, V. Density of Free Modules over Finite Chain Rings. arXiv
**2021**, arXiv:2106.09403. [Google Scholar] [CrossRef] - van Lint, J. Introduction to Coding Theory; Graduate Texts in Mathematics; Springer: Berlin/Heidelberg, Germany, 1982. [Google Scholar]

${\mathit{w}}_{\mathit{H}}$ | $\mathit{wt}$ | ${\mathit{w}}_{\mathit{L}}$ | ${\mathit{w}}_{\mathit{K}}$ | W | |
---|---|---|---|---|---|

0 | 0 | 0 | 0 | 0 | 0 |

1 | 1 | 1/2 | 1 | 1 | 1 |

2 | 1 | 3/2 | 2 | 2 | 2 |

3 | 1 | 2 | 3 | 1 | 2 |

4 | 1 | 3/2 | 2 | 2 | 2 |

5 | 1 | 1/2 | 1 | 1 | 1 |

${\mathit{w}}_{\mathit{H}}$ | $\mathit{wt}$ | ${\mathit{w}}_{\mathit{B}}$ | W | |
---|---|---|---|---|

(0,0) | 0 | 0 | 0 | 0 |

(0,1) | 1 | 2 | 2 | 2 |

(1,0) | 1 | 2 | 2 | 2 |

(1,1) | 2 | 0 | 1 | 1 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gassner, N.; Greferath, M.; Rosenthal, J.; Weger, V.
Bounds for Coding Theory over Rings. *Entropy* **2022**, *24*, 1473.
https://doi.org/10.3390/e24101473

**AMA Style**

Gassner N, Greferath M, Rosenthal J, Weger V.
Bounds for Coding Theory over Rings. *Entropy*. 2022; 24(10):1473.
https://doi.org/10.3390/e24101473

**Chicago/Turabian Style**

Gassner, Niklas, Marcus Greferath, Joachim Rosenthal, and Violetta Weger.
2022. "Bounds for Coding Theory over Rings" *Entropy* 24, no. 10: 1473.
https://doi.org/10.3390/e24101473