On Fourier-Based Inequality Indices
Abstract
:1. Introduction
2. A Fourier Approach to Gini and Pietra Indices
2.1. A Fourier-Based Expression of Gini Index
2.2. Another Fourier-Based Inequality Measure
2.3. A Fourier-Based Expression of Pietra Index
2.4. Towards New Inequality Indices
3. A New Fourier-Based Index of Inequality
3.1. Scaling
3.2. Lower and Upper Bounds
3.3. Convexity
3.4. Sub-Additivity for Convolutions
3.5. Adding a Noise
4. Examples
4.1. Two-Valued Random Variables
4.2. Poisson Distribution
4.3. Stable Laws
4.4. An Interesting Case: The Uniform Distribution
5. An Application to Kinetic Theory of Wealth Distribution
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Banerjee, B.; Chakrabarti, B.K.; Mitra, M.; Mutuswami, S. Inequality measures: The Kolkata index in comparison with other measures. Front. Phys. 2020, 8, 562182. [Google Scholar] [CrossRef]
- Eliazar, I. A tour of inequality. Ann. Phys. 2018, 389, 306–332. [Google Scholar] [CrossRef]
- Eliazar, I.; Giorgi, G.M. From Gini to Bonferroni to Tsallis: An inequality-indices trek. Metron 2020, 78, 119–153. [Google Scholar] [CrossRef]
- Betti, G.; Lemmi, A. (Eds.) Advances on Income Inequality and Concentration Measures; Routledge: New York, NY, USA, 2008. [Google Scholar]
- Coulter, P.B. Measuring Inequality: A Methodological Handbook; Westview Press: Boulder, CO, USA, 1989. [Google Scholar]
- Cowell, F. Measuring Inequality; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Hao, L.; Naiman, D.Q. Assessing Inequality; Sage: Los Angeles, CA, USA, 2010. [Google Scholar]
- Gini, C. Sulla misura della concentrazione e della variabilità dei caratteri. Atti Del R. Ist. Veneto Sci. Lett. Arti 1914, 73, 1203–1248, English translation in Metron 2005, 3–38.. [Google Scholar]
- Gini, C. Measurement of inequality of incomes. Econ. J. 1921, 31, 124–126. [Google Scholar] [CrossRef]
- Hurley, N.; Rickard, S. Comparing measures of sparsity. IEEE Trans. Inf. Theory 2009, 55, 4723–4741. [Google Scholar] [CrossRef]
- Pietra, G. Delle relazioni tra gli indici di variabilità. Nota I. Atti Reg. Ist. Veneto Sci. Lett. Arti 1915, 74 Pt II, 775–792. [Google Scholar]
- Eliazar, I.; Sokolov, I.M. Measuring statistical heterogeneity: The Pietra index. Physica A 2010, 389, 117–125. [Google Scholar] [CrossRef]
- Bonferroni, C.E. Elementi di Statistica Generale; Libreria Seber: Torino, Italy, 1930. [Google Scholar]
- Ghosh, A.; Chattopadhyay, N.; Chakrabarti, B.K. Inequality in societies, academic institutions and science journals: Gini and k-indices. Physica A 2014, 410, 30–34. [Google Scholar] [CrossRef]
- Banerjee, B.; Chakrabarti, B.K.; Mitra, M.; Mutuswami, S. On the Kolkata index as a measure of income inequality. Physica A 2020, 545, 123178. [Google Scholar] [CrossRef]
- Lorenz, M. Methods of measuring the concentration of wealth. Publ. Am. Stat. Assoc. 1905, 5, 209–219. [Google Scholar] [CrossRef]
- Veerasingam, S.; Ranjani, R.; Venkatachalapathy, R.; Bagaev, A.; Mukhanov, V.; Litvinyuk, D.; Mugilarasan, M.; Gurumoorthi, K.; Guganathan, L.; Aboobacker, V.M.; et al. Contributions of Fourier transform infrared spectroscopy in microplastic pollution research: A review. J. Appl. Ecol. 2005, 42, 1121–1128. [Google Scholar] [CrossRef]
- Couteron, P.; Pelissier, R.; Nicolini, E.A.; Paget, D. Predicting tropical forest stand structure parameters from Fourier transform of very high-resolution remotely sensed canopy images. J. Appl. Ecol. 2005, 42, 1121–1128. [Google Scholar] [CrossRef]
- Grigoryan, A.M.; Agaian, S.S. New look on quantum representation of images: Fourier transform representation. Quantum Inf. Process. 2020, 19, 148. [Google Scholar] [CrossRef]
- Makowski, M.; Piotrowski, E.W.; Fraçkiewicz, P.; Szopa, M. Interpretation for the Principle of Minimum Fisher Information. Entropy 2021, 23, 1464. [Google Scholar] [CrossRef]
- Auricchio, G.; Codegoni, A.; Gualandi, S.; Toscani, G.; Veneroni, M. On the equivalence between Fourier-based and Wasserstein metrics. Rend. Lincei Mat. Appl. 2020, 31, 627–649. [Google Scholar]
- Auricchio, G.; Codegoni, A.; Gualandi, S.; Zambon, L. The Fourier discrepancy function. Commun. Math. Sci. 2022. to appear. [Google Scholar]
- Xu, K. How Has the Literature on Gini’s Index Evolved in the Past 80 Years? Available online: https://www.mathstat.dal.ca/~kuan/howgini.pdf (accessed on 5 September 2022).
- Gabetta, G.; Toscani, G.; Wennberg, B. Metrics for probability measures and the trend to equilibrium for solutions of the Boltzmann equation. J. Statist. Phys. 1995, 81, 901–934. [Google Scholar] [CrossRef]
- Carrillo, J.A.; Toscani, G. Contractive probability metrics and asymptotic behavior of dissipative kinetic equations. Riv. Mat. Univ. Parma 2007, 6, 75–198. [Google Scholar]
- Matthes, D.; Toscani, G. On steady measures of kinetic models of conservative economies. J. Statist. Phys. 2008, 130, 1087–1117. [Google Scholar] [CrossRef]
- Toscani, G.; Villani, C. Probability Metrics and Uniqueness of the Solution to the Boltzmann Equation for a Maxwell Gas. J. Statist. Phys. 1999, 94, 619–637. [Google Scholar] [CrossRef]
- Pareschi, L.; Toscani, G. Interacting Multiagent Systems. Kinetic Equations & Monte Carlo Methods; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Zolotarev, V.M. Metric distances in spaces of random variables and their measures. Math. USSR-Sb 1976, 30, 373. [Google Scholar] [CrossRef]
- Oberhettinger, F. Fourier Transforms of Distributions and Their Inverses: A Collection of Tables; Academic Press: Cambridge, MA, USA, 1973. [Google Scholar]
- Skellam, J.G. The frequency distribution of the difference between two Poisson variates belonging to different populations. J. R. Stat. Soc. Ser. A 1946, 109, 296. [Google Scholar] [CrossRef] [PubMed]
- Skellam, J.G. Random dispersal in theoretical populations. Biometrika 1951, 38, 196–218. [Google Scholar] [CrossRef] [PubMed]
- Zolotarev, V.M. One-Dimensional Stable Distributions; American Mathematical Society: Providence, RI, USA, 1986. [Google Scholar]
- Angle, J. The surplus theory of social stratification and the size distribution of personal wealth. Soc. Forces 1986, 65, 293–326. [Google Scholar] [CrossRef]
- Angle, J. The inequality process as a wealth maximizing process. Physica A 2006, 367, 388–414. [Google Scholar] [CrossRef]
- Drǎgulescu, A.; Yakovenko, V.M. Statistical mechanics of money. Eur. Phys. J. B 2000, 17, 723–729. [Google Scholar] [CrossRef]
- Ispolatov, S.; Krapivsky, P.L.; Redner, S. Wealth distributions in asset exchange models. Eur. Phys. J. B 1998, 2, 267–276. [Google Scholar] [CrossRef]
- Chakraborti, A.; Chakrabarti, B.K. Statistical mechanics of money: How saving propensity affects its distributions. Eur. Phys. J. B Condens. Matter Complex Syst. 2000, 17, 167–170. [Google Scholar] [CrossRef] [Green Version]
Measure | Density | Fourier Transform | Index |
---|---|---|---|
Exponential | |||
Gamma | |||
Chi-squared | |||
Laplace |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toscani, G. On Fourier-Based Inequality Indices. Entropy 2022, 24, 1393. https://doi.org/10.3390/e24101393
Toscani G. On Fourier-Based Inequality Indices. Entropy. 2022; 24(10):1393. https://doi.org/10.3390/e24101393
Chicago/Turabian StyleToscani, Giuseppe. 2022. "On Fourier-Based Inequality Indices" Entropy 24, no. 10: 1393. https://doi.org/10.3390/e24101393
APA StyleToscani, G. (2022). On Fourier-Based Inequality Indices. Entropy, 24(10), 1393. https://doi.org/10.3390/e24101393