Object detection is a significant activity in computer vision, and various approaches have been proposed to detect varied objects using deep neural networks (DNNs). However, because DNNs are computation-intensive, it is difficult to apply them to resource-constrained devices. Here, we propose an on-device object detection method using domain-specific models. In the proposed method, we define object of interest (OOI) groups that contain objects with a high frequency of appearance in specific domains. Compared with the existing DNN model, the layers of the domain-specific models are shallower and narrower, reducing the number of trainable parameters; thus, speeding up the object detection. To ensure a lightweight network design, we combine various network structures to obtain the best-performing lightweight detection model. The experimental results reveal that the size of the proposed lightweight model is 21.7 MB, which is 91.35% and 36.98% smaller than those of YOLOv3-SPP and Tiny-YOLO, respectively. The f-measure achieved on the MS COCO 2017 dataset were 18.3%, 11.9% and 20.3% higher than those of YOLOv3-SPP, Tiny-YOLO and YOLO-Nano, respectively. The results demonstrated that the lightweight model achieved higher efficiency and better performance on non-GPU devices, such as mobile devices and embedded boards, than conventional models.
View Full-Text
►▼
Show Figures
This is an open access article distributed under the
Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited