# Unveiling Informational Properties of the Chen-Ouillon-Sornette Seismo-Electrical Model

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. COS Seismo-Electrical Model

## 3. FS Method

## 4. Results

## 5. Discussion and Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Jordan, T.H.; Chen, Y.-T.; Gasparini, P.; Madariaga, R.; Main, I.; Marzocchi, W.; Papadopoulos, G.; Sobolev, G.; Yamaoka, K.; Zschau, J. Operational Earthquake Forecasting: State of Knowledge and Guidelines for Utilization. Ann. Geophys.
**2011**, 54, 316–391. [Google Scholar] [CrossRef] - Wyss, M. Why is earthquake prediction research not progressing faster? Tectonophysics
**2001**, 338, 217–223. [Google Scholar] [CrossRef] - Geller, R.J. Earthquake prediction: A critical review. Geophys. J. Int.
**1997**, 131, 425–450. [Google Scholar] [CrossRef][Green Version] - Uyeda, S. VAN method of short-term earthquake prediction shows promise. Eos Trans. Am. Geophys. Union
**1998**, 79, 573–580. [Google Scholar] [CrossRef] - Varotsos, P.; Eftaxias, K.; Vallianatos, F.; Lazaridou, M. Basic principles for evaluating an earthquake prediction method. Geophys. Res. Lett.
**1996**, 23, 1295–1298. [Google Scholar] [CrossRef][Green Version] - Lighthill, S.J. A Critical Review of Van: Earthquake Prediction from Seismic Electrical Signals; World Scientific: Singapore, 1996; ISBN 978-981-4499-44-6. [Google Scholar]
- Fu, C.-C.; Walia, V.; Yang, T.F.; Lee, L.-C.; Liu, T.-K.; Chen, C.-H.; Kumar, A.; Lin, S.-J.; Lai, T.-H.; Wen, K.-L. Preseismic anomalies in soil-gas radon associated with 2016 M 6.6 Meinong earthquake, Southern Taiwan. Terr. Atmos. Ocean. Sci.
**2017**, 28, 787–798. [Google Scholar] [CrossRef][Green Version] - Petraki, E.; Nikolopoulos, D.; Panagiotaras, D.; Cantzos, D.; Yannakopoulos, P.; Nomicos, C.; Stonham, J. Radon-222: A Po-tential Short-Term Earthquake Precursor. J. Earth Sci. Clim. Chang.
**2015**, 6, 1. [Google Scholar] - Chien, S.-H.J.; Chi, W.-C.; Ke, C.-C. Precursory and coseismic groundwater temperature perturbation: An example from Taiwan. J. Hydrol.
**2020**, 582, 124457. [Google Scholar] [CrossRef] - Chen, C.-H.; Tang, C.-C.; Cheng, K.-C.; Wang, C.-H.; Wen, S.; Lin, C.-H.; Wen, Y.-Y.; Meng, G.; Yeh, T.-K.; Jan, J.C.; et al. Groundwater–strain coupling before the 1999 M w 7.6 Taiwan Chi-Chi earthquake. J. Hydrol.
**2015**, 524, 378–384. [Google Scholar] [CrossRef] - Hattori, K. ULF Geomagnetic Changes Associated with Large Earthquakes. Terr. Atmos. Ocean. Sci.
**2004**, 15, 329–360. [Google Scholar] [CrossRef][Green Version] - Chen, H.-J.; Chen, C.-C. Testing the correlations between anomalies of statistical indexes of the geoelectric system and earthquakes. Nat. Hazards
**2016**, 84, 877–895. [Google Scholar] [CrossRef][Green Version] - Chen, H.-J.; Chen, C.-C.; Ouillon, G.; Sornette, D. Using Skewness and Kurtosis of Geoelectric Fields to Forecast the 2016/2/6, ML6.6 Meinong, Taiwan Earthquake. Terr. Atmos. Ocean. Sci.
**2017**, 28, 745–761. [Google Scholar] [CrossRef][Green Version] - Hayakawa, M.; Sandhu, A.; Okada, H. Earthquake Prediction with Electromagnetic Phenomena. AIP Conf. Proc.
**2016**, 1709, 020002. [Google Scholar] [CrossRef][Green Version] - Morgounov, V.; Malzev, S. A multiple fracture model of pre-seismic electromagnetic phenomena. Tectonophysics
**2007**, 431, 61–72. [Google Scholar] [CrossRef] - Eftaxias, K.; Contoyiannis, Y.; Balasis, G.; Karamanos, K.; Kopanas, J.; Antonopoulos, G.; Koulouras, G.; Nomicos, C. Evidence of fractional-Brownian-motion-type asperity model for earthquake generation in candidate pre-seismic electromagnetic emissions. Nat. Hazards Earth Syst. Sci.
**2008**, 8, 657–669. [Google Scholar] [CrossRef][Green Version] - Huang, Q. Rethinking earthquake-related DC-ULF electromagnetic phenomena: Towards a physics-based approach. Nat. Hazards Earth Syst. Sci.
**2011**, 11, 2941–2949. [Google Scholar] [CrossRef] - Petraki, E.; Nikolopoulos, D.; Nomicos, C.; Stonham, J.; Cantzos, D.; Yannakopoulos, P.; Kottou, S. Electromagnetic Pre-earthquake Precursors: Mechanisms, Data and Models-A Review. J. Earth Sci. Clim. Chang.
**2015**, 6, 11. [Google Scholar] [CrossRef][Green Version] - Eftaxias, K.; Kapiris, P.; Polygiannakis, J.; Peratzakis, A.; Kopanas, J.; Antonopoulos, G.; Rigas, D. Experience of short term earthquake precursors with VLF–VHF electromagnetic emissions. Nat. Hazards Earth Syst. Sci.
**2003**, 3, 217–228. [Google Scholar] [CrossRef] - Hayakawa, M.; Hobara, Y. Current status of seismo-electromagnetics for short-term earthquake prediction. Geomat. Nat. Hazards Risk
**2010**, 1, 115–155. [Google Scholar] [CrossRef] - Schekotov, A.; Chebrov, D.; Hayakawa, M.; Belyaev, G.; Berseneva, N. Short-term earthquake prediction in Kamchatka using low-frequency magnetic fields. Nat. Hazards
**2020**, 100, 735–755. [Google Scholar] [CrossRef] - Varotsos, P.A.; Sarlis, N.V.; Skordas, E.S.; Lazaridou, M.S. Seismic Electric Signals: An additional fact showing their physical interconnection with seismicity. Tectonophysics
**2013**, 589, 116–125. [Google Scholar] [CrossRef] - Varotsos, P.A.; Sarlis, N.V.; Skordas, E.S. Long-range correlations in the electric signals that precede rupture: Further investigations. Phys. Rev. E
**2003**, 67, 021109. [Google Scholar] [CrossRef][Green Version] - Tzanis, A.; Vallianatos, F.; Gruszow, S. Identification and discrimination of transient electrical earthquake precursors: Fact, fiction and some possibilities. Phys. Earth Planet. Inter.
**2000**, 121, 223–248. [Google Scholar] [CrossRef] - Eftaxias, K.; Kapiris, P.; Polygiannakis, J.; Bogris, N.; Kopanas, J.; Antonopoulos, G.; Peratzakis, A.; Hadjicontis, V. Signature of pending earthquake from electromagnetic anomalies. Geophys. Res. Lett.
**2001**, 28, 3321–3324. [Google Scholar] [CrossRef] - Pham, V.N.; Geller, R.J. Comment on “Signature of pending earthquake from electromagnetic anomalies” by K. Eftaxias et al. Geophys. Res. Lett.
**2002**, 29, 18-1–18-2. [Google Scholar] [CrossRef][Green Version] - Park, S.K.; Dalrymple, W.; Larsen, J.C. The 2004 Parkfield earthquake: Test of the electromagnetic precursor hypothesis. J. Geophys. Res. Solid Earth
**2007**, 112. [Google Scholar] [CrossRef] - Uyeda, S.; Nagao, T.; Kamogawa, M. Short-term earthquake prediction: Current status of seismo-electromagnetics. Tectonophysics
**2009**, 470, 205–213. [Google Scholar] [CrossRef] - Chen, Y.-I.; Huang, C.-S.; Liu, J.-Y. Statistical evidences of seismo-ionospheric precursors applying receiver operating characteristic (ROC) curve on the GPS total electron content in China. J. Asian Earth Sci.
**2015**, 114, 393–402. [Google Scholar] [CrossRef] - Han, P.; Hattori, K.; Zhuang, J.; Chen, C.-H.; Liu, J.-Y.; Yoshida, S. Evaluation of ULF seismo-magnetic phenomena in Kakioka, Japan by using Molchan’s error diagram. Geophys. J. Int.
**2017**, 208, 482–490. [Google Scholar] [CrossRef] - Sarlis, N.V. Statistical Significance of Earth’s Electric and Magnetic Field Variations Preceding Earthquakes in Greece and Japan Revisited. Entropy
**2018**, 20, 561. [Google Scholar] [CrossRef][Green Version] - Chen, H.-J.; Chen, C.-C.; Ouillon, G.; Sornette, D. A paradigm for developing earthquake probability forecasts based on geoelectric data. Eur. Phys. J. Spec. Top.
**2021**, 230, 381–407. [Google Scholar] [CrossRef] - Eccles, D.; Sammonds, P.R.; Clint, O.C. Laboratory studies of electrical potential during rock failure. Int. J. Rock Mech. Min. Sci.
**2005**, 42, 933–949. [Google Scholar] [CrossRef] - Freund, F. Toward a unified solid state theory for pre-earthquake signals. Acta Geophys.
**2010**, 58, 719–766. [Google Scholar] [CrossRef] - Takeuchi, A.; Lau, B.W.S.; Freund, F.T. Current and surface potential induced by stress-activated positive holes in igneous rocks. Phys. Chem. Earth Parts A B C
**2006**, 31, 240–247. [Google Scholar] [CrossRef] - Takeuchi, A.; Nagao, T. Activation of hole charge carriers and generation of electromotive force in gabbro blocks subjected to nonuniform loading. J. Geophys. Res. Solid Earth
**2013**, 118, 915–925. [Google Scholar] [CrossRef] - Rabinovitch, A.; Frid, V.; Bahat, D. Surface oscillations—A possible source of fracture induced electromagnetic radiation. Tectonophysics
**2007**, 431, 15–21. [Google Scholar] [CrossRef] - Vallianatos, F.; Tzanis, A. Electric current generation associated with the deformation rate of a solid: Preseismic and coseismic signals. Phys. Chem. Earth
**1998**, 23, 933–938. [Google Scholar] [CrossRef] - Vallianatos, F.; Triantis, D.; Tzanis, A.; Anastasiadis, C.; Stavrakas, I. Electric earthquake precursors: From laboratory results to field observations. Phys. Chem. Earth Parts A B C
**2004**, 29, 339–351. [Google Scholar] [CrossRef] - Vallianatos, F.; Triantis, D. Scaling in Pressure Stimulated Currents related with rock fracture. Phys. A Stat. Mech. Its Appl.
**2008**, 387, 4940–4946. [Google Scholar] [CrossRef] - Yoshida, S.; Uyeshima, M.; Nakatani, M. Electric potential changes associated with slip failure of granite: Preseismic and coseismic signals. J. Geophys. Res. Solid Earth
**1997**, 102, 14883–14897. [Google Scholar] [CrossRef] - Revil, A.; Jardani, A. Seismoelectric response of heavy oil reservoirs: Theory and numerical modelling. Geophys. J. Int.
**2010**, 180, 781–797. [Google Scholar] [CrossRef][Green Version] - Zhu, Z.; Toksöz, M.N. Experimental measurements of the streaming potential and seismoelectric conversion in Berea sandstone. Geophys. Prospect.
**2012**, 61, 688–700. [Google Scholar] [CrossRef] - Huang, Q.; Ren, H.; Zhang, D.; Chen, Y.J. Medium effect on the characteristics of the coupled seismic and electromagnetic signals. Proc. Jpn. Acad. Ser. B
**2015**, 91, 17–24. [Google Scholar] [CrossRef][Green Version] - Ren, H.; Huang, Q.; Chen, X. Numerical simulation of seismo-electromagnetic fields associated with a fault in a porous medium. Geophys. J. Int.
**2016**, 206, 205–220. [Google Scholar] [CrossRef][Green Version] - Chen, H.-J.; Chen, C.-C.; Ouillon, G.; Sornette, D. Coupled mechano-electrokinetic Burridge-Knopoff model of fault sliding events and transient geoelectric signals. Eur. Phys. J. Spec. Top.
**2021**, 230, 67–84. [Google Scholar] [CrossRef] - Burridge, R.; Knopoff, L. Model and Theoretical Seismicity. Bull. Seismol. Soc. Am.
**1967**, 57, 341–371. [Google Scholar] - Abaimov, S.G.; Turcotte, D.L.; Shcherbakov, R.; Rundle, J.B. Recurrence and interoccurrence behavior of self-organized complex phenomena. Nonlinear Process. Geophys.
**2007**, 14, 455–464. [Google Scholar] [CrossRef] - Brown, S.R.; Scholz, C.H.; Rundle, J.B. A simplified spring-block model of earthquakes. Geophys. Res. Lett.
**1991**, 18, 215–218. [Google Scholar] [CrossRef] - Carlson, J.M. Two-dimensional model of a fault. Phys. Rev. A
**1991**, 44, 6226–6232. [Google Scholar] [CrossRef] - Pelletier, J.D. Spring-Block Models of Seismicity: Review and Analysis of a Structurally Heterogeneous Model Coupled to a Viscous Asthenosphere. In Geocomplexity and the Physics of Earthquakes; Rundle, J.B., Turcotte, D.L., Klein, W., Eds.; American Geophysical Union (AGU): Washington, DC, USA, 2000; pp. 27–42. ISBN 978-1-118-66837-5. [Google Scholar]
- Varotsos, P.; Alexopoulos, K.; Nomicos, K. Comments on the Pressure Variation of the Gibbs Energy for Bound and Unbound Defects. Phys. Status Solidi
**1982**, 111, 581–590. [Google Scholar] [CrossRef] - Varotsos, P.; Alexopoulos, K. Physical properties of the variations of the electric field of the earth preceding earthquakes. II. determination of epicenter and magnitude. Tectonophysics
**1984**, 110, 99–125. [Google Scholar] [CrossRef] - Varotsos, P.; Alexopoulos, K.; Lazaridou, M. Latest aspects of earthquake prediction in Greece based on seismic electric signals, II. Tectonophysics
**1993**, 224, 1–37. [Google Scholar] [CrossRef][Green Version] - Gutenberg, B.A.; Richter, C.F. Seismicity of the Earth and Related Phenomena, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 1954. [Google Scholar]
- Hainzl, S.; Zöller, G.; Kurths, J. Similar power laws for foreshock and aftershock sequences in a spring-block model for earthquakes. J. Geophys. Res. Solid Earth
**1999**, 104, 7243–7253. [Google Scholar] [CrossRef] - Ruff, L.J. Asperity distributions and large earthquake occurrence in subduction zones. Tectonophysics
**1992**, 211, 61–83. [Google Scholar] [CrossRef][Green Version] - Varotsos, P.A.; Sarlis, N.V.; Skordas, E.S. Phenomena preceding major earthquakes interconnected through a physical model. Ann. Geophys.
**2019**, 37, 315–324. [Google Scholar] [CrossRef][Green Version] - Mavromatou, C.; Hadjicontis, V.; Ninos, D.; Mastrogiannis, D.; Eftaxias, K.; Hadjicontis, E. Understanding the fracture phenomena in inhomogeneous rock samples and ionic crystals, by monitoring the electromagnetic emission during their deformation. Phys. Chem. Earth Parts A B C
**2004**, 29, 353–357. [Google Scholar] [CrossRef] - Yang, C.; Liu, S.; Liu, J.; Yang, H.; Xie, J. Characteristics of self-potential of coal samples under uniaxial compression. J. Appl. Geophys.
**2019**, 168, 1–11. [Google Scholar] [CrossRef] - Nenovski, P. Underground current impulses as a possible source of unipolar magnetic pulses. Acta Geod. Geophys.
**2018**, 53, 555–577. [Google Scholar] [CrossRef][Green Version] - Scoville, J.T.; Heraud, J.; Freund, F. Pre-earthquake magnetic pulses. Nat. Hazards Earth Syst. Sci.
**2015**, 15, 1873–1880. [Google Scholar] [CrossRef][Green Version] - Bleier, T.; Dunson, C.; Maniscalco, M.; Bryant, N.; Bambery, R.; Freund, F. Investigation of ULF magnetic pulsations, air conductivity changes, and infra red signatures associated with the 30 October Alum Rock M5.4 earthquake. Nat. Hazards Earth Syst. Sci.
**2009**, 9, 585–603. [Google Scholar] [CrossRef] - Bleier, T.; Dunson, C.; Alvarez, C.; Freund, F.; Dahlgren, R. Correlation of pre-earthquake electromagnetic signals with laboratory and field rock experiments. Nat. Hazards Earth Syst. Sci.
**2010**, 10, 1965–1975. [Google Scholar] [CrossRef][Green Version] - Bleier, T.; Dunson, C.; Roth, S.; Heraud, J.; Lira, A.; Freund, F.; Dahlgren, R.; Bambery, R.; Bryant, N.; Liu, J.Y.; et al. Ground-based and space-based electromagnetic monitoring for pre-earthquake signals. In Earthquake Prediction Studies: Seismo Electromagnetics; Hayakawa, M., Ed.; TERRAPUB: Tokyo, Japan, 2013; pp. 113–127. ISBN 978-4-88704-163-9. [Google Scholar]
- Ramírez-Rojas, A.; Pavía-Miller, C.; Angulo-Brown, F. Statistical behavior of the spectral exponent and the correlation time of electric self-potential time series associated to the Ms=7.4 14 September 1995 earthquake in Mexico. Phys. Chem. Earth Parts A B C
**2004**, 29, 305–312. [Google Scholar] [CrossRef] - Petraki, E.; Nikolopoulos, D.; Chaldeos, Y.; Koulouras, G.; Nomicos, C.; Yannakopoulos, P.H.; Kottou, S.; Stonham, J. Fractal evolution of MHz electromagnetic signals prior to earthquakes: Results collected in Greece during 2009. Geomat. Nat. Hazards Risk
**2016**, 7, 550–564. [Google Scholar] [CrossRef][Green Version] - Archer, J.W.; Dobbs, M.R.; Aydin, A.; Reeves, H.J.; Prance, R.J. Measurement and correlation of acoustic emissions and pressure stimulated voltages in rock using an electric potential sensor. Int. J. Rock Mech. Min. Sci.
**2016**, 89, 26–33. [Google Scholar] [CrossRef][Green Version] - Freund, F. Pre-earthquake signals: Underlying physical processes. J. Asian Earth Sci.
**2011**, 41, 383–400. [Google Scholar] [CrossRef] - Freund, F.T. Pre-earthquake signals—Part I: Deviatoric stresses turn rocks into a source of electric currents. Nat. Hazards Earth Syst. Sci.
**2007**, 7, 535–541. [Google Scholar] [CrossRef][Green Version] - Freund, F.T. Pre-earthquake signals—Part II: Flow of battery currents in the crust. Nat. Hazards Earth Syst. Sci.
**2007**, 7, 543–548. [Google Scholar] [CrossRef][Green Version] - Takeuchi, A.; Aydan, Ö.; Sayanagi, K.; Nagao, T. Generation of electromotive force in igneous rocks subjected to non-uniform loading. Earthq. Sci.
**2011**, 24, 593–600. [Google Scholar] [CrossRef][Green Version] - Theimer, B.D.; Nobes, D.C.; Warner, B.G. A study of the geoelectrical properties of peatlands and their influence on ground-penetrating radar surveying1. Geophys. Prospect.
**1994**, 42, 179–209. [Google Scholar] [CrossRef] - Jouniaux, L.; Pozzi, J.-P. Permeability dependence of streaming potential in rocks for various fluid conductivities. Geophys. Res. Lett.
**1995**, 22, 485–488. [Google Scholar] [CrossRef][Green Version] - Knight, R.J.; Nur, A. The dielectric constant of sandstones, 60 kHz to 4 MHz. Geophysics
**1987**, 52, 644–654. [Google Scholar] [CrossRef][Green Version] - Niu, Q.; Zhang, C.; Prasad, M. A Framework for Pore-Scale Simulation of Effective Electrical Conductivity and Permittivity of Porous Media in the Frequency Range from 1 mHz to 1 GHz. J. Geophys. Res. Solid Earth
**2020**, 125. [Google Scholar] [CrossRef] - Porretta, R.; Bianchi, F. Profiles of Relative Permittivity and Electrical Conductivity from Unsaturated Soil Water Content Models. Ann. Geophys.
**2016**, 59, 0320. [Google Scholar] [CrossRef] - Cartwright-Taylor, A.; Vallianatos, F.; Sammonds, P. Superstatistical view of stress-induced electric current fluctuations in rocks. Phys. A Stat. Mech. Its Appl.
**2014**, 414, 368–377. [Google Scholar] [CrossRef] - Chen, H.-J.; Ye, Z.-K.; Chiu, C.-Y.; Telesca, L.; Chen, C.-C.; Chang, W.-L. Self-Potential Ambient Noise and Spectral Relationship with Urbanization, Seismicity, and Strain Rate Revealed via the Taiwan Geoelectric Monitoring Network. J. Geophys. Res. Solid Earth
**2020**, 125. [Google Scholar] [CrossRef] - Fisher, R.A. Theory of Statistical Estimation. Math. Proc. Camb. Philos. Soc.
**1925**, 22, 700–725. [Google Scholar] [CrossRef][Green Version] - Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J.
**1948**, 27, 379–423. [Google Scholar] [CrossRef][Green Version] - Vignat, C.; Bercher, J.-F. Analysis of signals in the Fisher–Shannon information plane. Phys. Lett. A
**2003**, 312, 27–33. [Google Scholar] [CrossRef] - Frieden, B.R. Fisher information, disorder, and the equilibrium distributions of physics. Phys. Rev. A
**1990**, 41, 4265–4276. [Google Scholar] [CrossRef] [PubMed] - Frieden, B.R.; Soffer, B.H. Lagrangians of physics and the game of Fisher-information transfer. Phys. Rev. E
**1995**, 52, 2274–2286. [Google Scholar] [CrossRef] - Martin, M.; Perez, J.; Plastino, A. Fisher information and nonlinear dynamics. Phys. A Stat. Mech. Its Appl.
**2001**, 291, 523–532. [Google Scholar] [CrossRef] - Sen, K.D.; Antolín, J.; Angulo, J.C. Fisher-Shannon analysis of ionization processes and isoelectronic series. Phys. Rev. A
**2007**, 76, 032502. [Google Scholar] [CrossRef] - Baravalle, R.; Rosso, O.A.; Montani, F. Causal Shannon–Fisher Characterization of Motor/Imagery Movements in EEG. Entropy
**2018**, 20, 660. [Google Scholar] [CrossRef] [PubMed][Green Version] - Telesca, L.; Lovallo, M. Analysis of the time dynamics in wind records by means of multifractal detrended fluctuation analysis and the Fisher–Shannon information plane. J. Stat. Mech. Theory Exp.
**2011**, 2011, P07001. [Google Scholar] [CrossRef] - Telesca, L.; Lovallo, M.; Hsu, H.-L.; Chen, C.-C. Analysis of dynamics in magnetotelluric data by using the Fisher–Shannon method. Phys. A Stat. Mech. Its Appl.
**2011**, 390, 1350–1355. [Google Scholar] [CrossRef] - Telesca, L.; Lovallo, M. Fisher-Shannon Analysis of Wind Records. Int. J. Energy Stat.
**2013**, 1, 281–290. [Google Scholar] [CrossRef] - Telesca, L.; Lovallo, M.; Chamoli, A.; Dimri, V.P.; Srivastava, K. Fisher–Shannon analysis of seismograms of tsunamigenic and non-tsunamigenic earthquakes. Phys. A Stat. Mech. Its Appl.
**2013**, 392, 3424–3429. [Google Scholar] [CrossRef] - Telesca, L.; Lovallo, M.; Romano, G.; Konstantinou, K.I.; Hsu, H.-L.; Chen, C.-C. Using the informational Fisher–Shannon method to investigate the influence of long-term deformation processes on geoelectrical signals: An example from the Taiwan orogeny. Phys. A Stat. Mech. Its Appl.
**2014**, 414, 340–351. [Google Scholar] [CrossRef] - Telesca, L.; Lovallo, M.; Ramírez-Rojas, A.; Angulo-Brown, F. A nonlinear strategy to reveal seismic precursory signatures in earthquake-related self-potential signals. Phys. A Stat. Mech. Its Appl.
**2009**, 388, 2036–2040. [Google Scholar] [CrossRef] - Telesca, L.; Lovallo, M.; Carniel, R. Time-dependent Fisher Information Measure of volcanic tremor before the 5 April 2003 paroxysm at Stromboli volcano, Italy. J. Volcanol. Geotherm. Res.
**2010**, 195, 78–82. [Google Scholar] [CrossRef] - Potirakis, S.M.; Minadakis, G.; Eftaxias, K. Analysis of electromagnetic pre-seismic emissions using Fisher information and Tsallis entropy. Phys. A Stat. Mech. Its Appl.
**2012**, 391, 300–306. [Google Scholar] [CrossRef] - Potirakis, S.M.; Minadakis, G.; Nomicos, C.D.; Eftaxias, K. A multidisciplinary analysis for traces of the last state of earthquake generation in preseismic electromagnetic emissions. Nat. Hazards Earth Syst. Sci.
**2011**, 11, 2859–2879. [Google Scholar] [CrossRef][Green Version] - Telesca, L.; Lapenna, V.; Lovallo, M. Fisher Information Analysis of earthquake-related geoelectrical signals. Nat. Hazards Earth Syst. Sci.
**2005**, 5, 561–564. [Google Scholar] [CrossRef][Green Version] - Esquivel, R.O.; Angulo, J.C.; Antolín, J.; Dehesa, J.S.; López-Rosa, S.; Flores-Gallegos, N. Analysis of complexity measures and information planes of selected molecules in position and momentum spaces. Phys. Chem. Chem. Phys.
**2010**, 12, 7108–7116. [Google Scholar] [CrossRef] [PubMed] - Romera, E.; Dehesa, J.S. The Fisher–Shannon information plane, an electron correlation tool. J. Chem. Phys.
**2004**, 120, 8906–8912. [Google Scholar] [CrossRef][Green Version] - Angulo, J.C.; Antolín, J.; Sen, K.D. Fisher–Shannon plane and statistical complexity of atoms. Phys. Lett. A
**2008**, 372, 670–674. [Google Scholar] [CrossRef] - Janicki, A.; Weron, A. Simulation and Chaotic Behavior of Alpha-Stable Stochastic Processes; Chapman & Hall/CRC Pure and Applied Mathematics; CRC Press: Boca Raton, FL, USA, 1993; ISBN 978-0-8247-8882-7. [Google Scholar]
- Devroye, L. A Course in Density Estimation; Progress in Probability; Birkhäuser Boston Inc.: Cambridge, MA, USA, 1987; ISBN 978-0-8176-3365-3. [Google Scholar]
- Troudi, M.; Alimi, A.M.; Saoudi, S. Analytical Plug-in Method for Kernel Density Estimator Applied to Genetic Neutrality Study. Eurasip J. Adv. Signal Process.
**2008**, 2008, 739082. [Google Scholar] [CrossRef][Green Version] - Raykar, V.C.; Duraiswami, R. Fast optimal bandwidth selection for kernel density estimation. In Proceedings of the 2006 SIAM International Conference on Data Mining, Bethesda, MD, USA, 20–22 April 2006; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2006; pp. 524–528. [Google Scholar]
- Telesca, L.; Lovallo, M. On the performance of Fisher Information Measure and Shannon entropy estimators. Phys. A Stat. Mech. Its Appl.
**2017**, 484, 569–576. [Google Scholar] [CrossRef] - Potirakis, S.M.; Karadimitrakis, A.; Eftaxias, K. Natural time analysis of critical phenomena: The case of pre-fracture electromagnetic emissions. Chaos Interdiscip. J. Nonlinear Sci.
**2013**, 23, 023117. [Google Scholar] [CrossRef] - Ramirezrojas, A.; Telesca, L.; Angulo-Brown, F. Entropy of geoelectrical time series in the natural time domain. Nat. Hazards Earth Syst. Sci.
**2011**, 11, 219–225. [Google Scholar] [CrossRef] - Varotsos, P.A.; Skordas, E.; Sarlis, N.; Lazaridou, M.S. Fluctuations, under time reversal, of the natural time and the entropy distinguish similar looking electric signals of different dynamics. J. Appl. Phys.
**2008**, 103, 14906. [Google Scholar] [CrossRef][Green Version] - Varotsos, P.A.; Sarlis, N.V.; Skordas, E.S. Study of the temporal correlations in the magnitude time series before major earthquakes in Japan. J. Geophys. Res. Space Phys.
**2014**, 119, 9192–9206. [Google Scholar] [CrossRef] - Sarlis, N.V.; Skordas, E.S.; Varotsos, P.A. Order parameter fluctuations of seismicity in natural time before and after mainshocks. EPL Europhys. Lett.
**2010**, 91, 59001. [Google Scholar] [CrossRef]

**Figure 1.**Schematic diagram of the Chen–Ouillon–Sornette (COS) seismo-electrical model (originated from Chen et al. [46]. For the spring-block system, ${v}_{L}$ is the velocity of the loading plate; ${K}_{C}$ and ${K}_{L}$ are the spring stiffness. For the RLC-type circuit, r and c are the block resistance and capacitance, respectively; R and L are the earth resistance and inductance surrounding the blocks, respectively; q is the stored electrical charge in one block; ${i}_{r}$, ${i}_{c}$, and I are the currents; ${V}_{in}$ is the stress-induced voltage. Subscript k means the index of the blocks. ${V}_{g}$ is the grounding voltage and set to be 0 V by convention.

**Figure 3.**(

**a**) Time series of the voltages simulated under the electrical parameters of $\widehat{r}=5$, $\widehat{L}=5$, and $\widehat{c}=0.001$. (

**b**) Power spectral density (PSD) of the time series in (

**a**). The red line represents the fitting of the $1/{f}^{-\beta}$ noise with the scaling of $\beta =1.95$ and the R-squared ${R}^{2}$ of 0.93.

**Figure 4.**Fisher–Shannon (FS) information plane of the simulated voltages: (

**a**) the voltages simulated through the COS model for $\widehat{r}=5$ and $\widehat{L}=5$, while increasing $\widehat{c}$ from 0.001 to 1000. Each case has 10 simulations with different initial block positions; (

**b**) the voltages with the fixed parameters $\widehat{r}=5$ and $\widehat{c}=5$ and the increase of $\widehat{L}$ from 0.001 to 1000; (

**c**) the voltages with the fixed parameters $\widehat{c}=5$ and $\widehat{L}=5$ and the increase of $\widehat{r}$ from 0.001 to 100; (

**d**) FS information plane for all cases from (

**a**) to (

**c**). Red circles represent the simulations of changing $\widehat{c}$, blue triangles changing $\widehat{L}$, and black squares changing $\widehat{r}$.

**Figure 5.**Complexity (${I}_{x}{N}_{x}$) for the simulations of changing $\widehat{c}$ (

**a**), changing $\widehat{L}$ (

**b**), and changing $\widehat{r}$ (

**c**). Each vertical line represents the mean value within one standard error.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Chen, H.-J.; Telesca, L.; Lovallo, M.; Chen, C.-C. Unveiling Informational Properties of the Chen-Ouillon-Sornette Seismo-Electrical Model. *Entropy* **2021**, *23*, 337.
https://doi.org/10.3390/e23030337

**AMA Style**

Chen H-J, Telesca L, Lovallo M, Chen C-C. Unveiling Informational Properties of the Chen-Ouillon-Sornette Seismo-Electrical Model. *Entropy*. 2021; 23(3):337.
https://doi.org/10.3390/e23030337

**Chicago/Turabian Style**

Chen, Hong-Jia, Luciano Telesca, Michele Lovallo, and Chien-Chih Chen. 2021. "Unveiling Informational Properties of the Chen-Ouillon-Sornette Seismo-Electrical Model" *Entropy* 23, no. 3: 337.
https://doi.org/10.3390/e23030337