Enhanced Slime Mould Algorithm for Multilevel Thresholding Image Segmentation Using Entropy Measures
Abstract
:1. Introduction
- ESMA based on Levy flight and quasi opposition-based learning for solving global optimization problems and multilevel thresholding image segmentation.
- The optimization performance of ESMA is evaluated on 23 benchmark functions including unimodal and multimodal.
- DSMA is applied for thresholding segmentation using minimum cross-entropy measure.
- The segmentation quality is verified according to the PSNR, SSIM, FSIM, and statistical test.
- The performance of DSMA is compared with several classical and state-of-the-art optimization algorithm.
2. Preliminaries
2.1. Slime Mould Algorithm
Algorithm 1 Pseudo-code of SMA |
Initialize the positions of search agent; |
While current iteration < maximum iteration do |
Check if any search agent goes beyond the search space and amend it; |
Calculate the fitness of all slime mould; |
For each search agent do |
Update positions by Equation (1); |
End For |
t = t + 1; |
End While |
Return the best solution; |
2.2. Levy Flight
2.3. Quasi Opposition-Based Learning
2.3.1. Opposition-Based Learning
2.3.2. Quasi Opposition-Based Learning
2.4. Minimum Cross-Entropy
3. The Proposed Algorithm
3.1. Details of ESMA
Algorithm 2 Pseudo-code of ESMA |
Initialize the positions of search agent; |
While current iteration < maximum iteration do |
Check if any search agent goes beyond the search space and amend it; |
Calculate the fitness of all slime mould; |
For each search agent, do |
Update positions by Equation (20); |
End For |
Apply QOBL strategy by Equation (10); |
Select the best position into next iteration by greedy strategy; |
t = t + 1; |
End While |
Return the best solution; |
3.2. Computational Complexity Analysis
4. Experimental Results and Discussion
4.1. Definition of 23 Benchmark Functions
- SMA [35] was proposed by Li et al. in 2020 and simulates the behavior and morphological process of slime mould during foraging.
- ROA [36] was proposed by Jia et al. in 2021 and simulates the parasitic behavior of remora.
- AOA [32] was proposed by Abualigah et al. in 2021 and is inspired by the arithmetic operator in mathematics.
- AO [33] was proposed by Abualigah et al. in 2021 and is inspired by the Aquila’s behaviors in nature during the process of catching the prey.
- SSA [30] was proposed by Mirjalili et al. in 2017 and is inspired by the swarming behavior of salps when navigating and foraging in oceans.
- WOA [29] was proposed by Mirjalili et al. in 2016 and mimics the social behavior of humpback whales.
- SCA [31] was proposed by Mirjalili et al. in 2016 and is inspired by the sine function and cosine function in nature.
4.2. Statistical Results on 23 Benchmark Functions
4.3. Wilcoxon Rank-Sum Test
4.4. Convergence Behavior Analysis
4.5. Qualitative Metrics Analysis
5. Experimental Results on Multilevel Thresholding
5.1. Experiment Setup
5.2. Evaluation Measurements
5.2.1. PSNR
5.2.2. SSIM
5.2.3. FSIM
5.3. Experimental Result Analysis
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Image | nTh | ESMA | SMA | ROA | AOA | AO | SSA | WOA | SCA |
---|---|---|---|---|---|---|---|---|---|
Lena | 4 | 71 109 141 177 | 71 109 141 177 | 71 109 141 177 | 78 112 147 200 | 71 109 141 177 | 71 109 141 177 | 71 109 141 177 | 78 105 142 181 |
6 | 60 86 113 137 160 187 | 60 85 112 137 160 187 | 60 86 113 137 160 187 | 17 47 53 91 134 176 | 60 86 113 137 160 187 | 60 86 113 137 160 187 | 60 86 113 137 160 187 | 58 87 105 136 153 186 | |
8 | 52 69 90 111 130 147 166 191 | 50 65 84 102 121 142 163 189 | 2 52 70 93 116 139 161 188 | 62 87 109 122 142 164 182 189 | 52 69 90 111 130 147 166 191 | 52 69 90 111 130 147 166 191 | 52 69 90 111 130 147 166 191 | 1 53 76 101 121 137 165 189 | |
10 | 48 60 75 91 107 122 137 152 169 193 | 50 65 83 100 117 134 149 165 184 203 | 47 59 73 90 106 121 137 152 169 193 | 17 45 55 68 78 110 141 155 170 201 | 3 50 64 82 99 116 134 151 169 193 | 49 62 78 95 110 126 141 155 172 194 | 2 50 65 83 100 117 135 151 169 193 | 1 47 50 71 77 92 110 138 164 187 | |
Baboon | 4 | 65 100 132 164 | 64 99 131 164 | 65 100 132 164 | 47 92 141 190 | 65 100 132 164 | 65 100 132 164 | 65 100 132 164 | 61 98 134 169 |
6 | 49 75 100 123 146 172 | 47 73 98 121 145 172 | 49 75 100 123 146 172 | 46 69 102 142 179 179 | 49 75 100 123 146 172 | 49 75 100 123 146 172 | 49 75 100 123 146 172 | 38 56 83 114 135 158 | |
8 | 40 63 83 103 122 140 160 180 | 34 55 74 94 114 133 154 177 | 39 61 81 101 119 137 158 179 | 70 94 118 154 157 184 190 194 | 38 61 81 101 119 137 158 179 | 39 62 82 102 121 139 159 180 | 39 61 81 101 119 137 158 179 | 1 1 26 59 88 113 137 175 | |
10 | 32 52 69 86 102 117 132 149 167 185 | 25 46 62 79 96 113 129 146 164 182 | 9 40 59 77 95 112 128 145 164 183 | 28 41 64 89 114 125 156 180 200 229 | 35 56 74 92 110 127 144 163 182 253 | 35 56 74 92 110 127 144 163 182 244 | 8 40 59 77 95 112 128 145 164 183 | 1 2 2 43 72 91 116 130 146 170 | |
Butterfly | 4 | 70 97 125 161 | 70 97 125 161 | 70 97 125 161 | 69 108 147 226 | 70 97 125 161 | 70 97 125 161 | 70 97 125 161 | 64 90 119 163 |
6 | 61 83 103 127 153 180 | 61 83 103 127 153 181 | 61 83 103 127 153 180 | 42 66 75 96 135 154 | 61 82 103 127 153 180 | 61 82 103 127 153 180 | 61 82 103 127 153 181 | 1 62 85 111 136 169 | |
8 | 54 69 82 98 115 136 158 181 | 54 69 82 98 115 136 157 181 | 54 69 82 98 115 136 158 181 | 27 52 80 115 130 151 161 233 | 54 69 82 98 115 135 158 181 | 54 69 84 100 115 135 157 180 | 50 69 83 99 115 135 158 181 | 1 47 74 96 114 138 164 183 | |
10 | 26 54 69 83 96 111 127 143 160 182 | 31 50 68 83 96 111 127 142 160 182 | 26 54 69 83 96 111 127 143 160 182 | 35 44 56 57 66 91 104 136 158 202 | 2 44 57 70 84 100 115 135 158 180 | 12 54 69 83 96 111 127 142 160 182 | 33 54 66 82 97 112 127 142 161 182 | 1 55 61 68 88 105 112 128 149 174 | |
Peppers | 4 | 37 76 118 164 | 37 77 119 165 | 37 77 119 165 | 53 61 109 142 | 37 77 119 165 | 37 77 119 165 | 37 77 119 165 | 35 72 118 168 |
6 | 25 49 78 108 140 174 | 32 62 88 115 146 177 | 25 49 78 108 140 174 | 13 41 59 102 152 176 | 24 48 78 108 140 174 | 25 49 78 108 140 174 | 25 49 78 108 140 174 | 1 36 78 114 141 169 | |
8 | 22 43 68 89 109 133 158 183 | 22 42 67 88 108 133 158 183 | 22 42 67 88 108 133 158 183 | 30 45 61 73 85 130 172 217 | 13 45 78 91 124 151 166 202 | 23 44 71 93 118 148 178 235 | 22 43 68 89 109 134 158 183 | 6 37 58 84 101 129 157 180 | |
10 | 20 36 55 74 91 109 131 153 174 196 | 16 26 41 59 77 94 113 137 160 184 | 11 26 45 62 87 97 122 141 174 199 | 2 17 30 71 83 98 125 147 152 205 | 17 43 72 80 102 126 148 157 167 204 | 22 42 67 87 106 128 151 173 195 236 | 2 22 42 67 87 106 128 151 173 195 | 1 1 20 31 55 83 110 136 168 250 | |
Tank | 4 | 67 96 124 145 | 67 96 123 145 | 67 96 123 145 | 57 112 132 147 | 67 96 124 146 | 68 98 126 147 | 67 96 124 146 | 71 103 126 146 |
6 | 56 77 99 119 136 151 | 1 64 91 115 135 151 | 56 77 98 119 136 151 | 78 92 128 146 175 213 | 56 77 98 118 135 150 | 56 77 99 119 136 149 | 55 77 99 118 136 151 | 14 63 91 115 131 147 | |
8 | 55 74 93 109 123 138 147 156 | 52 71 90 106 122 135 147 156 | 2 55 76 95 114 128 141 152 | 50 89 119 126 150 196 200 241 | 1 3 56 77 99 118 136 149 | 55 76 95 114 129 142 152 251 | 54 75 93 111 127 139 149 159 | 1 1 51 72 94 119 128 149 | |
10 | 47 63 78 92 106 119 130 142 151 159 | 1 3 52 71 87 103 118 133 145 157 | 28 55 72 88 102 116 129 140 150 159 | 15 26 48 67 78 108 137 143 162 224 | 6 31 57 78 98 119 136 151 212 217 | 55 76 95 113 129 141 153 211 220 255 | 43 55 73 88 100 116 129 139 151 158 | 1 18 35 51 67 93 106 123 146 155 | |
House | 4 | 63 90 115 157 | 63 90 115 157 | 63 90 115 157 | 63 104 161 217 | 63 90 115 157 | 63 90 115 157 | 63 90 115 157 | 60 85 116 154 |
6 | 61 85 106 122 141 173 | 63 89 113 138 170 207 | 63 89 113 138 170 207 | 33 66 88 114 137 156 | 63 89 113 138 170 207 | 63 89 113 138 170 207 | 63 89 113 138 170 207 | 2 68 97 115 156 218 | |
8 | 55 72 90 109 124 142 172 207 | 57 75 92 110 124 142 172 207 | 55 72 90 109 124 142 172 207 | 6 38 76 97 141 162 180 214 | 55 73 91 110 124 142 172 207 | 12 59 78 96 116 138 170 207 | 55 72 90 109 124 142 172 207 | 1 1 65 95 118 135 162 207 | |
10 | 51 67 80 94 109 121 130 146 173 207 | 2 51 66 80 95 111 125 143 172 207 | 6 51 67 81 96 112 125 143 172 207 | 57 76 94 102 124 144 165 169 182 221 | 32 51 67 81 95 112 125 143 172 207 | 13 55 72 90 109 124 142 172 207 244 | 55 72 90 110 124 142 171 189 199 218 | 1 58 80 90 109 131 150 184 205 224 | |
Cameraman | 4 | 29 76 125 158 | 29 76 125 158 | 29 76 125 158 | 16 40 91 140 | 29 76 125 158 | 29 76 125 158 | 29 76 125 158 | 27 78 135 167 |
6 | 23 49 85 121 148 173 | 23 49 85 121 148 173 | 23 49 85 121 148 173 | 7 21 43 78 116 153 | 23 49 85 121 148 173 | 23 49 85 121 148 173 | 23 48 85 120 148 173 | 21 43 93 124 149 175 | |
8 | 23 47 80 112 135 155 173 202 | 15 26 50 83 115 138 158 177 | 23 47 80 112 135 155 173 202 | 23 52 105 112 129 148 161 172 | 23 47 80 112 134 155 173 202 | 15 26 50 82 114 137 157 177 | 23 48 81 112 135 155 173 202 | 1 1 20 45 86 124 147 171 | |
10 | 14 25 47 75 102 122 141 158 174 202 | 14 23 39 60 88 116 137 156 173 202 | 14 21 34 56 86 115 137 156 173 202 | 33 53 76 91 141 159 168 241 250 253 | 14 28 52 80 105 123 141 156 172 200 | 14 25 49 82 113 135 155 173 197 230 | 14 23 39 61 89 117 138 157 174 202 | 1 15 20 38 57 91 127 145 163 219 | |
Pirate | 4 | 13 41 82 130 | 13 41 82 130 | 13 41 82 130 | 7 21 58 95 | 13 41 82 130 | 13 41 82 130 | 13 41 82 130 | 13 41 81 124 |
6 | 8 24 48 80 114 147 | 8 24 48 80 114 147 | 8 24 49 81 115 148 | 19 70 97 103 157 254 | 8 24 49 81 115 148 | 8 24 48 80 114 147 | 8 24 49 81 115 148 | 8 21 50 84 122 162 | |
8 | 5 14 29 48 71 97 125 153 | 5 14 30 49 72 98 125 153 | 5 13 27 46 68 94 123 152 | 12 35 54 68 94 142 157 164 | 5 14 29 48 71 97 125 153 | 5 15 33 55 83 113 140 170 | 7 20 41 66 96 126 154 223 | 4 12 15 24 47 82 114 148 | |
10 | 4 10 21 36 53 73 96 120 144 169 | 4 9 17 28 42 60 81 105 130 156 | 3 8 16 28 43 61 82 106 130 156 | 8 28 41 67 98 126 137 145 151 162 | 4 10 21 36 55 77 101 127 155 240 | 5 14 29 49 71 96 122 148 177 254 | 5 14 29 49 72 97 123 148 183 210 | 1 4 12 29 41 71 83 114 136 163 |
Image | nTh | ESMA | SMA | ROA | AOA | AO | SSA | WOA | SCA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | ||
Lena | 4 | 0.4611 | 0 | 0.4611 | 0 | 0.4611 | 0 | 0.7091 | 0.1235 | 0.4611 | 0 | 0.4611 | 0 | 0.4774 | 0.0621 | 0.513 | 0.0796 |
6 | 0.245 | 0.0063 | 0.249 | 0.0142 | 0.2481 | 0.004 | 0.4945 | 0.0972 | 0.2567 | 0.0264 | 0.2473 | 0.0045 | 0.2481 | 0.014 | 0.3337 | 0.0464 | |
8 | 0.1512 | 0.0017 | 0.1634 | 0.0174 | 0.1569 | 0.0019 | 0.3348 | 0.063 | 0.1557 | 0.0127 | 0.1624 | 0.0169 | 0.1556 | 0.0127 | 0.243 | 0.0337 | |
10 | 0.1048 | 0.0015 | 0.1199 | 0.0169 | 0.1093 | 0.0087 | 0.2594 | 0.0366 | 0.1083 | 0.0081 | 0.113 | 0.01 | 0.1122 | 0.0119 | 0.1921 | 0.0238 | |
Baboon | 4 | 0.4962 | 0 | 0.4962 | 0 | 0.4962 | 0 | 0.7593 | 0.1236 | 0.4962 | 0 | 0.4962 | 0 | 0.4962 | 0 | 0.5342 | 0.0598 |
6 | 0.2781 | 0.0001 | 0.2785 | 0.0003 | 0.2782 | 0 | 0.4957 | 0.0791 | 0.281 | 0.0151 | 0.2783 | 0.0001 | 0.2806 | 0.0131 | 0.3507 | 0.0404 | |
8 | 0.178 | 0.0004 | 0.1805 | 0.0054 | 0.1784 | 0.0037 | 0.3544 | 0.0477 | 0.1789 | 0.0073 | 0.1868 | 0.0165 | 0.1783 | 0.004 | 0.2683 | 0.0396 | |
10 | 0.1229 | 0.0004 | 0.1293 | 0.0075 | 0.123 | 0.0017 | 0.2625 | 0.0311 | 0.1248 | 0.0071 | 0.1387 | 0.0149 | 0.1256 | 0.0081 | 0.2136 | 0.0275 | |
Butterfly | 4 | 0.3968 | 0 | 0.3968 | 0 | 0.3968 | 0 | 0.7151 | 0.1365 | 0.3968 | 0 | 0.3968 | 0 | 0.4116 | 0.0561 | 0.4669 | 0.0886 |
6 | 0.229 | 0.0043 | 0.2297 | 0.0184 | 0.2348 | 0.0278 | 0.4595 | 0.0859 | 0.229 | 0.0134 | 0.2292 | 0.0135 | 0.2372 | 0.0298 | 0.3061 | 0.0367 | |
8 | 0.1356 | 0.0141 | 0.1413 | 0.0181 | 0.1385 | 0.0224 | 0.305 | 0.0517 | 0.1389 | 0.007 | 0.1383 | 0.0157 | 0.138 | 0.0165 | 0.2219 | 0.0258 | |
10 | 0.0853 | 0.0039 | 0.1069 | 0.0157 | 0.0923 | 0.0097 | 0.244 | 0.0463 | 0.0926 | 0.0088 | 0.1059 | 0.0151 | 0.0969 | 0.015 | 0.1774 | 0.0244 | |
Peppers | 4 | 0.704 | 0 | 0.704 | 0 | 0.704 | 0 | 1.0897 | 0.1784 | 0.704 | 0 | 0.704 | 0 | 0.704 | 0 | 0.7277 | 0.015 |
6 | 0.4019 | 0.0027 | 0.4007 | 0.0019 | 0.3997 | 0.0003 | 0.6925 | 0.0853 | 0.3998 | 0.0003 | 0.4002 | 0.0013 | 0.3997 | 0.0001 | 0.4913 | 0.0585 | |
8 | 0.2456 | 0.0001 | 0.2481 | 0.0059 | 0.246 | 0.0025 | 0.4845 | 0.067 | 0.2459 | 0.0001 | 0.256 | 0.0237 | 0.2459 | 0.0001 | 0.3663 | 0.0361 | |
10 | 0.1755 | 0.0057 | 0.1779 | 0.0128 | 0.1793 | 0.0003 | 0.3631 | 0.0607 | 0.1792 | 0.0001 | 0.1931 | 0.0196 | 0.1792 | 0.0002 | 0.2913 | 0.0317 | |
Tank | 4 | 0.1992 | 0.0001 | 0.1993 | 0.0001 | 0.1992 | 0 | 0.3468 | 0.0542 | 0.1992 | 0 | 0.1992 | 0.0001 | 0.2026 | 0.0182 | 0.2184 | 0.0292 |
6 | 0.106 | 0.0012 | 0.1153 | 0.015 | 0.1069 | 0.0002 | 0.2579 | 0.0519 | 0.1127 | 0.0136 | 0.1171 | 0.0161 | 0.1106 | 0.0114 | 0.1694 | 0.0246 | |
8 | 0.0707 | 0.0022 | 0.0816 | 0.0148 | 0.0797 | 0.0078 | 0.1962 | 0.0468 | 0.0709 | 0.0058 | 0.0774 | 0.0089 | 0.0726 | 0.0092 | 0.1395 | 0.0196 | |
10 | 0.045 | 0.0048 | 0.0655 | 0.0126 | 0.049 | 0.006 | 0.1462 | 0.029 | 0.0524 | 0.0072 | 0.0612 | 0.0098 | 0.0521 | 0.0063 | 0.1024 | 0.0173 | |
House | 4 | 0.3302 | 0.0093 | 0.3302 | 0 | 0.3345 | 0.0237 | 0.478 | 0.0713 | 0.3302 | 0 | 0.3302 | 0 | 0.3302 | 0.0001 | 0.3512 | 0.0313 |
6 | 0.1816 | 0.0245 | 0.1606 | 0 | 0.1658 | 0.0197 | 0.3072 | 0.0429 | 0.1634 | 0.0153 | 0.1632 | 0.0142 | 0.1632 | 0.0142 | 0.2239 | 0.0329 | |
8 | 0.0964 | 0.0127 | 0.1018 | 0.0131 | 0.1009 | 0.0155 | 0.2271 | 0.034 | 0.0966 | 0.0078 | 0.1031 | 0.0128 | 0.1025 | 0.0134 | 0.1552 | 0.0198 | |
10 | 0.0665 | 0.0019 | 0.0773 | 0.0112 | 0.0669 | 0.0028 | 0.1686 | 0.0292 | 0.0705 | 0.0065 | 0.0715 | 0.0053 | 0.0714 | 0.0057 | 0.1246 | 0.0194 | |
Cameraman | 4 | 0.5385 | 0 | 0.5385 | 0 | 0.5385 | 0 | 0.7752 | 0.1214 | 0.5385 | 0 | 0.5385 | 0 | 0.5385 | 0 | 0.5506 | 0.0067 |
6 | 0.3032 | 0 | 0.3033 | 0 | 0.3033 | 0.0001 | 0.5071 | 0.076 | 0.3033 | 0 | 0.3105 | 0.0166 | 0.3033 | 0.0002 | 0.3682 | 0.0478 | |
8 | 0.2031 | 0.0042 | 0.2061 | 0.0063 | 0.2077 | 0.0117 | 0.3548 | 0.0569 | 0.2041 | 0.0021 | 0.2046 | 0.0015 | 0.2049 | 0.0087 | 0.2823 | 0.0431 | |
10 | 0.1368 | 0.0103 | 0.1396 | 0.0152 | 0.139 | 0.0088 | 0.2832 | 0.0426 | 0.1387 | 0.0061 | 0.1427 | 0.013 | 0.1383 | 0.0054 | 0.2299 | 0.0209 | |
Pirate | 4 | 1.0403 | 0 | 1.0403 | 0 | 1.0403 | 0 | 1.6838 | 0.3576 | 1.0403 | 0 | 1.0403 | 0 | 1.0403 | 0 | 1.0588 | 0.0117 |
6 | 0.5845 | 0.0045 | 0.5822 | 0.0016 | 0.5815 | 0 | 1.1018 | 0.2407 | 0.5815 | 0 | 0.5937 | 0.0458 | 0.5815 | 0.0001 | 0.6456 | 0.0341 | |
8 | 0.3593 | 0.0023 | 0.3599 | 0.0026 | 0.3576 | 0.0002 | 0.8182 | 0.1572 | 0.3577 | 0.0004 | 0.3904 | 0.0317 | 0.3576 | 0.0002 | 0.4814 | 0.0636 | |
10 | 0.2413 | 0.0058 | 0.2499 | 0.0056 | 0.2445 | 0.0007 | 0.6187 | 0.1055 | 0.2461 | 0.0095 | 0.3038 | 0.023 | 0.2443 | 0.0006 | 0.3821 | 0.0403 |
Image | nTh | ESMA | SMA | ROA | AOA | AO | SSA | WOA | SCA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | ||
Lena | 4 | 18.7867 | 0 | 18.7867 | 0 | 18.7867 | 0 | 17.9115 | 0.7829 | 18.7867 | 0 | 18.7867 | 0 | 18.7211 | 0.257 | 18.5889 | 0.4204 |
6 | 21.1436 | 0.3611 | 20.9155 | 0.201 | 20.9023 | 0.0791 | 19.6602 | 1.0424 | 20.9171 | 0.2101 | 20.9881 | 0.2528 | 20.888 | 0.0102 | 20.7039 | 0.8201 | |
8 | 23.3637 | 0.1453 | 23.2477 | 0.5122 | 23.3548 | 0.1958 | 21.3528 | 1.3934 | 23.2899 | 0.2038 | 23.3507 | 0.5784 | 23.3314 | 0.3472 | 22.7486 | 1.2342 | |
10 | 25.3269 | 0.329 | 24.9085 | 0.8677 | 25.255 | 0.5987 | 22.5184 | 1.6544 | 25.0865 | 0.5052 | 24.667 | 0.4771 | 25.3044 | 0.6412 | 23.8616 | 1.4136 | |
Baboon | 4 | 20.7335 | 0.0247 | 20.7335 | 0.0247 | 20.7215 | 0.0157 | 18.8128 | 1.0221 | 20.7215 | 0.0157 | 20.7163 | 0 | 20.7198 | 0.0131 | 20.4913 | 0.5255 |
6 | 24.195 | 0.0307 | 24.1869 | 0.0354 | 24.1523 | 0 | 21.2006 | 0.9268 | 24.1063 | 0.2569 | 24.1673 | 0.02 | 24.1101 | 0.2313 | 22.936 | 0.6118 | |
8 | 26.5418 | 0.0426 | 26.4394 | 0.2024 | 26.5412 | 0.1283 | 22.8569 | 0.9407 | 26.5353 | 0.1962 | 26.3104 | 0.4386 | 26.5417 | 0.1499 | 24.4069 | 0.707 | |
10 | 28.3939 | 0.07 | 27.9523 | 0.3452 | 28.3236 | 0.1161 | 24.3764 | 0.6605 | 28.2776 | 0.2594 | 27.7754 | 0.5268 | 28.2071 | 0.3548 | 25.566 | 0.6591 | |
Butterfly | 4 | 19.384 | 0 | 19.384 | 0 | 19.384 | 0 | 17.3819 | 1.7028 | 19.384 | 0 | 19.3918 | 0.0237 | 19.3124 | 0.2727 | 18.8569 | 0.8241 |
6 | 23.027 | 0.3381 | 22.6981 | 0.3791 | 22.4712 | 0.1428 | 20.1249 | 1.5871 | 22.4572 | 0.1907 | 22.7495 | 0.4085 | 22.4194 | 0.3011 | 21.7811 | 1.2288 | |
8 | 25.2782 | 0.4232 | 25.1357 | 0.5241 | 25.281 | 0.464 | 22.6981 | 1.1545 | 25.2233 | 0.2508 | 25.0719 | 0.5173 | 25.6065 | 0.5072 | 23.4691 | 0.959 | |
10 | 27.8053 | 0.9404 | 26.9718 | 1.0735 | 27.7339 | 0.9339 | 23.6315 | 1.6794 | 26.9143 | 1.088 | 26.6992 | 1.2001 | 27.8357 | 0.9296 | 24.9351 | 1.0205 | |
Peppers | 4 | 20.3048 | 0 | 20.2961 | 0.0175 | 20.3048 | 0 | 18.4579 | 1.0843 | 20.3048 | 0 | 20.3033 | 0.0079 | 20.3048 | 0 | 20.1694 | 0.2803 |
6 | 23.1363 | 0.1851 | 23.0465 | 0.131 | 22.9841 | 0.0193 | 20.6058 | 0.9365 | 22.9847 | 0.0241 | 23.0143 | 0.097 | 22.9755 | 0.0182 | 22.1766 | 0.5925 | |
8 | 25.4398 | 0.0251 | 25.3289 | 0.2152 | 25.4282 | 0.0478 | 22.2705 | 0.9964 | 25.4386 | 0.0236 | 25.2324 | 0.4713 | 25.4277 | 0.0225 | 23.3841 | 0.5773 | |
10 | 26.7164 | 0.213 | 26.6864 | 0.3272 | 26.9926 | 0.0468 | 23.7216 | 1.1374 | 27.0096 | 0.0336 | 26.5867 | 0.4785 | 26.986 | 0.0382 | 24.3768 | 0.5042 | |
Tank | 4 | 23.621 | 0.1847 | 23.5904 | 0.1884 | 23.6233 | 0.1601 | 21.0197 | 1.3991 | 23.631 | 0.1665 | 23.619 | 0.1653 | 23.5073 | 0.4685 | 23.1379 | 0.8407 |
6 | 27.1319 | 0.1967 | 26.5793 | 0.8502 | 27.1103 | 0.1303 | 22.6586 | 1.6433 | 26.734 | 0.7977 | 26.4843 | 0.9135 | 26.9133 | 0.5067 | 24.8651 | 0.8758 | |
8 | 29.1754 | 0.3681 | 28.6313 | 0.9286 | 28.6987 | 0.3745 | 24.7671 | 1.168 | 28.6371 | 0.375 | 28.55 | 0.6137 | 28.6097 | 0.4403 | 26.1582 | 1.0087 | |
10 | 31.0145 | 0.325 | 29.9936 | 0.8134 | 30.9248 | 0.7471 | 25.8087 | 1.3187 | 30.1609 | 0.6403 | 29.7464 | 1.014 | 30.8067 | 0.5992 | 28.0394 | 1.0181 | |
House | 4 | 19.6568 | 0 | 19.6568 | 0 | 19.6148 | 0.2299 | 18.4479 | 1.8064 | 19.6568 | 0 | 19.6568 | 0 | 19.6602 | 0.0129 | 19.3939 | 0.6208 |
6 | 22.8143 | 0.1219 | 22.7241 | 0.0352 | 22.5672 | 0.5813 | 21.1436 | 1.3549 | 22.6941 | 0.0906 | 22.6359 | 0.4089 | 22.6515 | 0.4135 | 21.6748 | 1.216 | |
8 | 24.6994 | 0.0803 | 24.4874 | 0.4175 | 24.6165 | 0.3892 | 22.5041 | 1.6702 | 24.642 | 0.2449 | 24.4491 | 0.4135 | 24.6646 | 0.2606 | 24.1296 | 1.4269 | |
10 | 25.9749 | 0.1114 | 25.6998 | 0.3883 | 26.0617 | 0.1936 | 23.7466 | 1.467 | 26.0764 | 0.5714 | 25.8552 | 0.4539 | 26.0151 | 0.2245 | 24.7753 | 1.5695 | |
Cameraman | 4 | 21.4059 | 0 | 21.4059 | 0 | 21.4059 | 0 | 19.2516 | 1.3089 | 21.4059 | 0 | 21.4059 | 0 | 21.4021 | 0.0142 | 21.1921 | 0.4044 |
6 | 23.905 | 0 | 23.9124 | 0.019 | 23.911 | 0.0177 | 21.3045 | 1.2432 | 23.9102 | 0.0178 | 23.8265 | 0.1787 | 23.9187 | 0.0413 | 22.9911 | 0.8038 | |
8 | 25.5199 | 0.4548 | 25.411 | 0.4505 | 25.5124 | 0.4735 | 23.1434 | 1.1121 | 25.5978 | 0.395 | 25.7295 | 0.315 | 25.6113 | 0.4191 | 24.1015 | 0.7116 | |
10 | 27.5098 | 0.3286 | 27.1335 | 0.5009 | 27.1949 | 0.439 | 24.3376 | 1.1574 | 27.487 | 0.3557 | 27.3671 | 0.4647 | 27.303 | 0.2443 | 24.9613 | 0.8164 | |
Pirate | 4 | 20.9183 | 0 | 20.9183 | 0 | 20.9183 | 0 | 19.2525 | 1.2367 | 20.9183 | 0 | 20.9183 | 0 | 20.9183 | 0 | 20.8557 | 0.2473 |
6 | 23.7017 | 0.2661 | 23.8158 | 0.0891 | 23.8575 | 0 | 21.3707 | 1.4619 | 23.8542 | 0.0126 | 23.7243 | 0.3979 | 23.8606 | 0.0172 | 22.846 | 0.5803 | |
8 | 25.7016 | 0.2009 | 25.5707 | 0.233 | 25.7204 | 0.0341 | 22.6917 | 1.4888 | 25.7117 | 0.07 | 25.4364 | 0.4623 | 25.7148 | 0.0309 | 24.092 | 0.7173 | |
10 | 27.1522 | 0.3278 | 27.0123 | 0.2586 | 27.1135 | 0.0535 | 23.5524 | 1.3516 | 27.112 | 0.1902 | 26.5997 | 0.3443 | 27.1225 | 0.0353 | 25.0381 | 0.6051 |
Image | nTh | ESMA | SMA | ROA | AOA | AO | SSA | WOA | SCA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | ||
Lena | 4 | 0.649 | 0 | 0.649 | 0 | 0.649 | 0 | 0.6311 | 0.0414 | 0.649 | 0 | 0.649 | 0 | 0.6484 | 0.0045 | 0.6465 | 0.0112 |
6 | 0.7284 | 0.0077 | 0.7232 | 0.0049 | 0.7236 | 0.0033 | 0.6904 | 0.0484 | 0.7236 | 0.0047 | 0.725 | 0.0055 | 0.723 | 0.0007 | 0.7131 | 0.0239 | |
8 | 0.7814 | 0.0025 | 0.779 | 0.0126 | 0.7812 | 0.004 | 0.7327 | 0.0463 | 0.7793 | 0.0044 | 0.7813 | 0.0145 | 0.7814 | 0.0082 | 0.7656 | 0.031 | |
10 | 0.8208 | 0.007 | 0.8158 | 0.0174 | 0.8256 | 0.0103 | 0.7652 | 0.0474 | 0.8223 | 0.0088 | 0.8115 | 0.0104 | 0.8252 | 0.0115 | 0.7935 | 0.0352 | |
Baboon | 4 | 0.8041 | 0.0002 | 0.8041 | 0.0002 | 0.8041 | 0.0001 | 0.7359 | 0.0338 | 0.8041 | 0.0001 | 0.8041 | 0 | 0.8041 | 0.0001 | 0.7937 | 0.0159 |
6 | 0.8766 | 0.0006 | 0.8764 | 0.0011 | 0.8762 | 0 | 0.8052 | 0.0255 | 0.8752 | 0.005 | 0.8761 | 0.0005 | 0.8754 | 0.0043 | 0.8511 | 0.0127 | |
8 | 0.917 | 0.0012 | 0.9144 | 0.0029 | 0.9158 | 0.0017 | 0.8461 | 0.0232 | 0.9157 | 0.0028 | 0.9125 | 0.0062 | 0.916 | 0.0021 | 0.8806 | 0.0124 | |
10 | 0.9395 | 0.0013 | 0.9351 | 0.0045 | 0.9388 | 0.0013 | 0.8778 | 0.0116 | 0.939 | 0.003 | 0.933 | 0.0068 | 0.9381 | 0.0043 | 0.8992 | 0.0124 | |
Butterfly | 4 | 0.6746 | 0 | 0.6746 | 0 | 0.6746 | 0 | 0.589 | 0.069 | 0.6746 | 0 | 0.6745 | 0.0003 | 0.6721 | 0.0094 | 0.6512 | 0.0318 |
6 | 0.786 | 0.0076 | 0.7779 | 0.0086 | 0.7737 | 0.0038 | 0.6924 | 0.0584 | 0.7734 | 0.0051 | 0.7796 | 0.01 | 0.7719 | 0.0085 | 0.748 | 0.0329 | |
8 | 0.8496 | 0.0056 | 0.8438 | 0.0125 | 0.8474 | 0.0112 | 0.777 | 0.0309 | 0.8496 | 0.0053 | 0.8437 | 0.0119 | 0.8525 | 0.0081 | 0.7987 | 0.0223 | |
10 | 0.8996 | 0.0115 | 0.8816 | 0.0175 | 0.897 | 0.0129 | 0.8022 | 0.037 | 0.8866 | 0.015 | 0.8776 | 0.019 | 0.8963 | 0.0139 | 0.8325 | 0.0205 | |
Peppers | 4 | 0.6714 | 0.0007 | 0.6717 | 0.0006 | 0.6714 | 0 | 0.632 | 0.0293 | 0.6714 | 0 | 0.6715 | 0.0003 | 0.6714 | 0 | 0.6699 | 0.0062 |
6 | 0.7371 | 0.0048 | 0.7397 | 0.0033 | 0.7411 | 0.0005 | 0.6915 | 0.024 | 0.7413 | 0.0004 | 0.7403 | 0.0026 | 0.7415 | 0.0005 | 0.7271 | 0.0153 | |
8 | 0.7873 | 0.0006 | 0.7867 | 0.0019 | 0.7872 | 0.0004 | 0.7291 | 0.0246 | 0.787 | 0.0006 | 0.7823 | 0.0107 | 0.787 | 0.0005 | 0.7623 | 0.0131 | |
10 | 0.8231 | 0.0011 | 0.8213 | 0.0037 | 0.8224 | 0.0007 | 0.7613 | 0.0274 | 0.8226 | 0.0004 | 0.8099 | 0.0107 | 0.8226 | 0.0006 | 0.7836 | 0.0139 | |
Tank | 4 | 0.777 | 0.0033 | 0.7759 | 0.0039 | 0.7756 | 0.0033 | 0.6936 | 0.0404 | 0.7741 | 0.0044 | 0.7759 | 0.0041 | 0.7728 | 0.0124 | 0.7632 | 0.0248 |
6 | 0.8682 | 0.0036 | 0.8601 | 0.014 | 0.8694 | 0.0034 | 0.7351 | 0.0509 | 0.8631 | 0.0137 | 0.8584 | 0.0152 | 0.8656 | 0.0098 | 0.8027 | 0.0257 | |
8 | 0.9206 | 0.0049 | 0.8965 | 0.0163 | 0.9108 | 0.0089 | 0.7926 | 0.0373 | 0.9072 | 0.0086 | 0.8999 | 0.011 | 0.9074 | 0.0096 | 0.8406 | 0.0199 | |
10 | 0.9307 | 0.0077 | 0.9153 | 0.0134 | 0.9338 | 0.0074 | 0.8221 | 0.0371 | 0.9275 | 0.0102 | 0.9188 | 0.0118 | 0.931 | 0.0073 | 0.8763 | 0.0234 | |
House | 4 | 0.7912 | 0 | 0.7912 | 0 | 0.7896 | 0.0083 | 0.735 | 0.0517 | 0.7912 | 0 | 0.7912 | 0 | 0.7912 | 0.0009 | 0.7798 | 0.0199 |
6 | 0.8424 | 0.0088 | 0.8354 | 0.0008 | 0.8339 | 0.005 | 0.7814 | 0.0527 | 0.8349 | 0.0016 | 0.8345 | 0.0032 | 0.8348 | 0.0034 | 0.8218 | 0.0174 | |
8 | 0.8904 | 0.0011 | 0.8848 | 0.0116 | 0.8875 | 0.0114 | 0.8289 | 0.029 | 0.889 | 0.0067 | 0.8823 | 0.0126 | 0.888 | 0.0071 | 0.8591 | 0.0131 | |
10 | 0.9205 | 0.0033 | 0.9129 | 0.0093 | 0.920 | 0.0035 | 0.8466 | 0.0328 | 0.9171 | 0.0059 | 0.9142 | 0.0069 | 0.9193 | 0.0055 | 0.8778 | 0.019 | |
Cameraman | 4 | 0.6955 | 0 | 0.6955 | 0 | 0.6955 | 0 | 0.6788 | 0.0488 | 0.6955 | 0 | 0.6955 | 0 | 0.6954 | 0.0003 | 0.6897 | 0.0167 |
6 | 0.7361 | 0 | 0.7361 | 0.0003 | 0.7361 | 0.0003 | 0.7071 | 0.0263 | 0.7361 | 0.0003 | 0.7334 | 0.0061 | 0.7361 | 0.0008 | 0.7254 | 0.0164 | |
8 | 0.787 | 0.0221 | 0.786 | 0.0193 | 0.7883 | 0.0218 | 0.7477 | 0.0387 | 0.7799 | 0.0176 | 0.7686 | 0.0104 | 0.7756 | 0.0176 | 0.7715 | 0.0321 | |
10 | 0.8412 | 0.0065 | 0.8364 | 0.0101 | 0.8395 | 0.007 | 0.7831 | 0.0548 | 0.8398 | 0.0103 | 0.823 | 0.0236 | 0.8395 | 0.0081 | 0.8193 | 0.0343 | |
Pirate | 4 | 0.6868 | 0 | 0.6868 | 0 | 0.6868 | 0 | 0.6198 | 0.0332 | 0.6868 | 0 | 0.6868 | 0 | 0.6868 | 0 | 0.6841 | 0.0043 |
6 | 0.7765 | 0.0027 | 0.7759 | 0.0015 | 0.7762 | 0 | 0.6947 | 0.0318 | 0.7762 | 0 | 0.7736 | 0.01 | 0.7761 | 0.0005 | 0.7723 | 0.0084 | |
8 | 0.8421 | 0.0026 | 0.8419 | 0.0021 | 0.8435 | 0.0003 | 0.7365 | 0.0281 | 0.8434 | 0.0006 | 0.8301 | 0.0111 | 0.8435 | 0.0003 | 0.8173 | 0.0133 | |
10 | 0.8746 | 0.0011 | 0.8748 | 0.0016 | 0.8761 | 0.0007 | 0.7752 | 0.0232 | 0.8757 | 0.0027 | 0.8571 | 0.0069 | 0.8762 | 0.0006 | 0.842 | 0.0102 |
Image | nTh | ESMA | SMA | ROA | AOA | AO | SSA | WOA | SCA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | ||
Lena | 4 | 0.855 | 0 | 0.855 | 0 | 0.855 | 0 | 0.8215 | 0.0183 | 0.855 | 0 | 0.855 | 0 | 0.8531 | 0.0075 | 0.8495 | 0.0119 |
6 | 0.8933 | 0.0131 | 0.8999 | 0.0074 | 0.9013 | 0.004 | 0.8535 | 0.0181 | 0.8979 | 0.009 | 0.8987 | 0.0093 | 0.9017 | 0.0031 | 0.8765 | 0.0089 | |
8 | 0.9100 | 0.0008 | 0.9068 | 0.007 | 0.9091 | 0.0019 | 0.8791 | 0.0179 | 0.9079 | 0.0025 | 0.9096 | 0.0078 | 0.9096 | 0.0046 | 0.8974 | 0.0113 | |
10 | 0.9233 | 0.0012 | 0.9233 | 0.0097 | 0.9258 | 0.0087 | 0.8947 | 0.0187 | 0.924 | 0.0062 | 0.9218 | 0.0037 | 0.9273 | 0.0092 | 0.9115 | 0.0157 | |
Baboon | 4 | 0.9268 | 0.0004 | 0.9268 | 0.0004 | 0.9266 | 0.0003 | 0.8948 | 0.0222 | 0.9266 | 0.0003 | 0.9265 | 0 | 0.9266 | 0.0002 | 0.9226 | 0.0108 |
6 | 0.9602 | 0.0005 | 0.9602 | 0.0009 | 0.9591 | 0 | 0.9248 | 0.0192 | 0.9587 | 0.0025 | 0.9597 | 0.0006 | 0.9587 | 0.0022 | 0.9473 | 0.0076 | |
8 | 0.9769 | 0.0011 | 0.9766 | 0.0015 | 0.9771 | 0.0005 | 0.9445 | 0.0144 | 0.9771 | 0.0012 | 0.976 | 0.0027 | 0.977 | 0.0008 | 0.9613 | 0.0098 | |
10 | 0.9859 | 0.0006 | 0.9851 | 0.0016 | 0.9861 | 0.0006 | 0.9576 | 0.0135 | 0.9861 | 0.0011 | 0.984 | 0.0023 | 0.9857 | 0.0015 | 0.9684 | 0.007 | |
Butterfly | 4 | 0.8454 | 0 | 0.8454 | 0 | 0.8454 | 0 | 0.7915 | 0.0257 | 0.8454 | 0 | 0.8454 | 0 | 0.8433 | 0.008 | 0.832 | 0.018 |
6 | 0.902 | 0.0012 | 0.9006 | 0.0048 | 0.8996 | 0.0052 | 0.8441 | 0.029 | 0.9008 | 0.0046 | 0.9006 | 0.0047 | 0.8985 | 0.0081 | 0.8789 | 0.015 | |
8 | 0.9352 | 0.004 | 0.9344 | 0.0061 | 0.9363 | 0.0054 | 0.8881 | 0.0178 | 0.9365 | 0.0029 | 0.9344 | 0.0057 | 0.9397 | 0.0056 | 0.9079 | 0.0129 | |
10 | 0.9615 | 0.0083 | 0.9538 | 0.01 | 0.9613 | 0.008 | 0.9029 | 0.0227 | 0.9535 | 0.0097 | 0.9516 | 0.0109 | 0.9618 | 0.0084 | 0.9254 | 0.0129 | |
Peppers | 4 | 0.849 | 0 | 0.849 | 0 | 0.849 | 0 | 0.8141 | 0.0181 | 0.849 | 0 | 0.849 | 0 | 0.849 | 0 | 0.8465 | 0.0032 |
6 | 0.8992 | 0.0018 | 0.8983 | 0.0012 | 0.8977 | 0.0002 | 0.8529 | 0.0156 | 0.8977 | 0.0003 | 0.898 | 0.0008 | 0.8976 | 0.0003 | 0.8842 | 0.01 | |
8 | 0.933 | 0.0006 | 0.931 | 0.0034 | 0.9328 | 0.0004 | 0.8818 | 0.0146 | 0.9329 | 0.0003 | 0.9298 | 0.0069 | 0.9328 | 0.0003 | 0.9039 | 0.0086 | |
10 | 0.9498 | 0.0068 | 0.9511 | 0.0073 | 0.9578 | 0.0005 | 0.907 | 0.0173 | 0.9578 | 0.0004 | 0.9532 | 0.0068 | 0.9578 | 0.0004 | 0.9176 | 0.0099 | |
Tank | 4 | 0.9154 | 0.0025 | 0.9158 | 0.0023 | 0.9153 | 0.0023 | 0.8516 | 0.0258 | 0.9149 | 0.0021 | 0.9154 | 0.0021 | 0.9145 | 0.0079 | 0.9028 | 0.0129 |
6 | 0.9506 | 0.0021 | 0.9461 | 0.0087 | 0.9508 | 0.0022 | 0.8827 | 0.031 | 0.9468 | 0.0068 | 0.9446 | 0.0091 | 0.9487 | 0.0056 | 0.9287 | 0.0113 | |
8 | 0.9672 | 0.0023 | 0.964 | 0.0079 | 0.9657 | 0.0033 | 0.9133 | 0.0192 | 0.9658 | 0.0044 | 0.9631 | 0.0049 | 0.9643 | 0.0038 | 0.9403 | 0.0107 | |
10 | 0.9789 | 0.0018 | 0.9751 | 0.0056 | 0.9784 | 0.0041 | 0.9313 | 0.0171 | 0.9743 | 0.0049 | 0.9724 | 0.0073 | 0.9787 | 0.0041 | 0.9556 | 0.0107 | |
House | 4 | 0.7969 | 0.0027 | 0.7962 | 0 | 0.7954 | 0.0045 | 0.7863 | 0.0214 | 0.7962 | 0 | 0.7962 | 0 | 0.7963 | 0.0006 | 0.7932 | 0.0097 |
6 | 0.867 | 0.0087 | 0.8747 | 0.0006 | 0.8728 | 0.0066 | 0.8262 | 0.0219 | 0.8734 | 0.0061 | 0.8736 | 0.0045 | 0.8739 | 0.0046 | 0.853 | 0.0159 | |
8 | 0.9104 | 0.0052 | 0.9076 | 0.0068 | 0.909 | 0.0071 | 0.857 | 0.0193 | 0.9101 | 0.0038 | 0.9079 | 0.0058 | 0.9097 | 0.0041 | 0.8883 | 0.0107 | |
10 | 0.9334 | 0.0018 | 0.9287 | 0.0066 | 0.9326 | 0.0023 | 0.8817 | 0.017 | 0.9315 | 0.0043 | 0.9317 | 0.0043 | 0.9344 | 0.0039 | 0.9019 | 0.012 | |
Cameraman | 4 | 0.8546 | 0 | 0.8546 | 0 | 0.8546 | 0 | 0.8227 | 0.0229 | 0.8546 | 0 | 0.8546 | 0 | 0.8546 | 0.0002 | 0.8506 | 0.0091 |
6 | 0.9023 | 0.0023 | 0.9028 | 0.0003 | 0.9028 | 0.0002 | 0.8601 | 0.0238 | 0.9027 | 0.0003 | 0.9007 | 0.0045 | 0.9028 | 0.0005 | 0.8855 | 0.0143 | |
8 | 0.9211 | 0.0076 | 0.9197 | 0.0088 | 0.9213 | 0.009 | 0.8865 | 0.0173 | 0.9237 | 0.0084 | 0.9283 | 0.007 | 0.925 | 0.0089 | 0.9004 | 0.0102 | |
10 | 0.9374 | 0.0037 | 0.9363 | 0.005 | 0.9366 | 0.0036 | 0.9037 | 0.0155 | 0.9394 | 0.0031 | 0.9396 | 0.0045 | 0.94 | 0.0018 | 0.913 | 0.0102 | |
Pirate | 4 | 0.8914 | 0 | 0.8914 | 0 | 0.8914 | 0 | 0.8501 | 0.0275 | 0.8914 | 0 | 0.8914 | 0 | 0.8914 | 0 | 0.8894 | 0.0046 |
6 | 0.9419 | 0.0039 | 0.9389 | 0.0016 | 0.9417 | 0 | 0.8933 | 0.0302 | 0.9417 | 0.0002 | 0.9396 | 0.0062 | 0.9417 | 0.0001 | 0.9243 | 0.0089 | |
8 | 0.9603 | 0.002 | 0.9591 | 0.0022 | 0.9602 | 0.0002 | 0.9136 | 0.0266 | 0.9602 | 0.0006 | 0.9612 | 0.0055 | 0.9601 | 0.0002 | 0.941 | 0.0102 | |
10 | 0.9726 | 0.0046 | 0.9737 | 0.0036 | 0.9766 | 0.0003 | 0.928 | 0.0236 | 0.9762 | 0.0021 | 0.9734 | 0.0038 | 0.9765 | 0.0002 | 0.9519 | 0.0073 |
Images | nTh | SMA | ROA | AOA | AO | SSA | WOA | SCA |
---|---|---|---|---|---|---|---|---|
Lena | 4 | NaN | NaN | 1.22 × 10−12 | NaN | NaN | 3.34 × 10−01 | 1.22 × 10−12 |
6 | 4.44 × 10−02 | 4.70 × 10−04 | 1.75 × 10−11 | 3.27 × 10−02 | 6.45 × 10−02 | 1.45 × 10−01 | 1.75 × 10−11 | |
8 | 3.38 × 10−05 | 8.56 × 10−02 | 2.47 × 10−11 | 8.62 × 10−01 | 3.48 × 10−02 | 1.10 × 10−01 | 2.47 × 10−11 | |
10 | 1.28 × 10−08 | 7.05 × 10−03 | 2.31 × 10−11 | 4.17 × 10−01 | 1.32 × 10−04 | 1.10 × 10−01 | 2.31 × 10−11 | |
Baboon | 4 | 4.45 × 10−01 | 6.55 × 10−04 | 1.34 × 10−11 | 6.55 × 10−04 | 2.56 × 10−03 | 1.28 × 10−04 | 1.34 × 10−11 |
6 | 8.44 × 10−01 | 7.04 × 10−11 | 1.89 × 10−11 | 8.74 × 10−10 | 2.63 × 10−05 | 4.80 × 10−08 | 1.89 × 10−11 | |
8 | 1.48 × 10−03 | 3.11 × 10−10 | 2.75 × 10−11 | 7.26 × 10−11 | 2.89 × 10−02 | 7.37 × 10−09 | 2.75 × 10−11 | |
10 | 9.75 × 10−10 | 4.05 × 10−07 | 2.70 × 10−11 | 6.81 × 10−07 | 8.33 × 10−03 | 3.24 × 10−03 | 2.70 × 10−11 | |
Butterfly | 4 | NaN | NaN | 1.21 × 10−12 | 1.09 × 10−02 | 4.18 × 10−02 | 3.34 × 10−01 | 1.21 × 10−12 |
6 | 3.13 × 10−02 | 1.14 × 10−02 | 2.20 × 10−11 | 1.06 × 10−03 | 4.71 × 10−01 | 5.30 × 10−01 | 2.20 × 10−11 | |
8 | 7.74 × 10−02 | 1.04 × 10−03 | 2.65 × 10−11 | 6.82 × 10−02 | 4.69 × 10−02 | 9.47 × 10−01 | 2.65 × 10−11 | |
10 | 4.91 × 10−06 | 3.64 × 10−03 | 1.44 × 10−11 | 1.04 × 10−02 | 2.49 × 10−06 | 2.85 × 10−04 | 1.44 × 10−11 | |
Peppers | 4 | 5.69 × 10−01 | 5.47 × 10−03 | 7.57 × 10−12 | 5.47 × 10−03 | 5.47 × 10−03 | 5.47 × 10−03 | 7.57 × 10−12 |
6 | 5.79 × 10−01 | 2.85 × 10−01 | 1.17 × 10−11 | 1.38 × 10−01 | 4.24 × 10−02 | 1.38 × 10−01 | 1.17 × 10−11 | |
8 | 4.13 × 10−03 | 3.55 × 10−01 | 1.97 × 10−11 | 1.10 × 10−01 | 9.50 × 10−01 | 1.75 × 10−01 | 1.97 × 10−11 | |
10 | 4.43 × 10−04 | 7.18 × 10−04 | 2.83 × 10−11 | 2.73 × 10−02 | 7.24 × 10−05 | 8.41 × 10−04 | 2.83 × 10−11 | |
Tank | 4 | 5.69 × 10−01 | 7.99 × 10−01 | 7.57 × 10−12 | 1.73 × 10−01 | 3.26 × 10−01 | 4.56 × 10−02 | 7.57 × 10−12 |
6 | 4.72 × 10−02 | 5.89 × 10−01 | 3.16 × 10−12 | 8.90 × 10−03 | 4.76 × 10−02 | 1.66 × 10−04 | 3.16 × 10−12 | |
8 | 6.38 × 10−08 | 1.01 × 10−03 | 2.90 × 10−11 | 1.10 × 10−01 | 4.36 × 10−02 | 3.25 × 10−02 | 2.90 × 10−11 | |
10 | 5.39 × 10−06 | 1.97 × 10−02 | 2.93 × 10−11 | 9.12 × 10−01 | 4.29 × 10−05 | 5.10 × 10−01 | 2.93 × 10−11 | |
House | 4 | 1.61 × 10−01 | 1.61 × 10−01 | 2.37 × 10−12 | 1.61 × 10−01 | 9.86 × 10−01 | 9.59 × 10−01 | 8.38 × 10−10 |
6 | 9.78 × 10−01 | 4.80 × 10−02 | 9.36 × 10−12 | 7.68 × 10−01 | 2.78 × 10−03 | 2.31 × 10−01 | 3.09 × 10−07 | |
8 | 7.83 × 10−07 | 2.43 × 10−06 | 5.21 × 10−12 | 5.90 × 10−06 | 3.32 × 10−03 | 4.98 × 10−07 | 5.21 × 10−12 | |
10 | 1.55 × 10−04 | 8.42 × 10−01 | 2.85 × 10−11 | 5.54 × 10−01 | 1.06 × 10−06 | 2.22 × 10−01 | 2.85 × 10−11 | |
Cameraman | 4 | NaN | NaN | 1.21 × 10−12 | NaN | NaN | 3.34 × 10−02 | 1.21 × 10−12 |
6 | 9.59 × 10−01 | 2.05 × 10−02 | 2.36 × 10−12 | 2.04 × 10−02 | 2.95 × 10−01 | 1.66 × 10−03 | 1.69 × 10−11 | |
8 | 2.87 × 10−01 | 4.52 × 10−02 | 2.66 × 10−11 | 1.40 × 10−01 | 4.12 × 10−03 | 2.50 × 10−02 | 2.66 × 10−11 | |
10 | 4.89 × 10−02 | 4.55 × 10−02 | 2.85 × 10−11 | 9.88 × 10−01 | 1.41 × 10−01 | 4.46 × 10−02 | 2.85 × 10−11 | |
Pirate | 4 | NaN | NaN | 1.22 × 10−12 | NaN | NaN | NaN | 1.22 × 10−12 |
6 | 1.38 × 10−06 | 1.89 × 10−11 | 2.83 × 10−11 | 4.22 × 10−12 | 6.65 × 10−07 | 2.73 × 10−11 | 2.83 × 10−11 | |
8 | 7.02 × 10−02 | 4.15 × 10−07 | 2.93 × 10−11 | 2.38 × 10−04 | 6.34 × 10−08 | 1.67 × 10−06 | 2.93 × 10−11 | |
10 | 2.80 × 10−01 | 2.47 × 10−07 | 2.95 × 10−11 | 9.18 × 10−06 | 2.32 × 10−10 | 1.82 × 10−07 | 2.95 × 10−11 |
References
- Bhattacharyya, S.; Maulik, U.; Dutta, P. Multilevel image segmentation with adaptive image context based thresholding. Appl. Soft Comput. 2011, 11, 946–962. [Google Scholar] [CrossRef]
- Malyszko, D.; Stepaniuk, J. Adaptive multilevel rough entropy evolutionary thresholding. Inf. Sci. 2010, 180, 1138–1158. [Google Scholar] [CrossRef]
- Li, L.; Sun, L.; Xue, Y.; Li, S.; Huang, X.; Mansour, R.F. Fuzzy multilevel image thresholding based on improved coyote optimization algorithm. IEEE Access 2021, 9, 33595–33607. [Google Scholar] [CrossRef]
- Esparza, E.R.; Calzada, L.A.Z.; Oliva, D.; Heidari, A.A.; Zaldivar, D.; Cisneros, M.P.; Foong, L.K. An efficient harris hawks-inspired image segmentation method. Expert Syst. Appl. 2020, 155, 113428. [Google Scholar] [CrossRef]
- Houssein, E.H.; Emam, M.M.; Ali, A.A. An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm. Expert Syst. Appl. 2021, 185, 115651. [Google Scholar] [CrossRef]
- Bao, X.; Jia, H.; Lang, C. A novel hybrid harris hawks optimization for color image multilevel thresholding segmentation. IEEE Access 2019, 7, 76529–76546. [Google Scholar] [CrossRef]
- Xing, Z. An improved emperor penguin optimization based multilevel thresholding for color image segmentation. Knowl.-Based Syst. 2020, 194, 105570. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, D.; Yu, F.; Heidari, A.A.; Ru, J.; Chen, H.; Mafarja, M.; Turabieh, H.; Pan, Z. Performance optimization of differential evolution with slime mould algorithm for multilevel breast cancer image segmentation. Comput. Biol. Med. 2021, 138, 104910. [Google Scholar] [CrossRef]
- Pare, S.; Kumar, A.; Bajaj, V.; Singh, G.K. An efficient method for multilevel color image thresholding using cuckoo search algorithm based on minimum cross entropy. Appl. Soft Comput. 2017, 61, 570–592. [Google Scholar] [CrossRef]
- Lei, B.; Fan, J. Multilevel minimum cross entropy thresholding: A comparative study. Appl. Soft Comput. 2020, 96, 106588. [Google Scholar] [CrossRef]
- Duan, L.; Yang, S.; Zhang, D. Multilevel thresholding using an improved cuckoo search algorithm for image segmentation. J. Supercomput. 2021, 77, 6734–6753. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, J.; Yang, Z.; Tang, J. Kapur’s entropy for underwater multilevel thresholding image segmentation based on whale optimization algorithm. IEEE Access 2020, 9, 41294–41319. [Google Scholar] [CrossRef]
- Li, J.; Tang, W.; Wang, J.; Zhang, X. A multilevel color image thresholding scheme based on minimum cross entropy and alternating direction method of multipliers. Optik 2019, 183, 30–37. [Google Scholar] [CrossRef]
- Kandhway, P.; Bhandari, A.K. Spatial context cross entropy function based multilevel image segmentation using multi-verse optimizer. Multimed. Tools Appl. 2019, 78, 22613–22641. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Q.; Liu, Y.; Jia, H.; Abualigah, L.; Zheng, R.; Wu, D. A hybrid SSA and SMA with mutation opposition-based learning for constrained engineering problems. Comput. Intell. Neurosci. 2021, 2021, 6379469. [Google Scholar] [CrossRef]
- Wang, S.; Jia, H.; Liu, Q.; Zheng, R. An improved hybrid aquila optimizer and harris hawks optimization for global optimization. Math. Biosci. Eng. 2021, 18, 7076–7109. [Google Scholar] [CrossRef]
- Zheng, R.; Jia, H.; Abualigah, L.; Liu, Q.; Wang, S. Deep ensemble of slime mold algorithm and arithmetic optimization algorithm for global optimization. Processes 2021, 9, 1774. [Google Scholar] [CrossRef]
- Saafan, M.M.; Gendy, E.M. IWOSSA: An improved whale optimization salp swarm algorithm for solving optimization problems. Expert Syst. Appl. 2021, 176, 114901. [Google Scholar] [CrossRef]
- Chen, H.; Li, W.; Yang, X. A whale optimization algorithm with chaos mechanism based on quasi-opposition for global optimization problems. Expert Syst. Appl. 2020, 158, 113612. [Google Scholar] [CrossRef]
- Khan, T.A.; Ling, S.H. A novel hybrid gravitational search particle swarm optimization algorithm. Eng. Appl. Artif. Intel. 2021, 102, 104263. [Google Scholar] [CrossRef]
- Li, Y.; Bai, X.; Jiao, L.; Xue, Y. Partitioned-cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation. Appl. Soft Comput. 2017, 56, 345–356. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Grefenstette, J.J. Genetic algorithms and machine learning. Mach. Learn. 1988, 3, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Rao, R.V.; Vakharia, D.P. Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput Intell Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A.; Mirjalili, S.; Elaziz, M.A.; Gandomi, A.H. The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng. 2021, 376, 113609. [Google Scholar] [CrossRef]
- Abualigah, L.; Yousri, D.; Elaziz, M.A.; Ewees, A.A.; Al-qaness, M.A.A.; Gandomi, A.H. Aquila optimizer: A novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural. Comput. Appl. 2015, 27, 495–513. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Jia, H.; Peng, X.; Lang, C. Remora optimization algorithm. Expert Syst. Appl. 2021, 185, 115665. [Google Scholar] [CrossRef]
- Jia, H.; Ma, J.; Song, W. Multilevel thresholding segmentation for color image using modified moth-flame optimization. IEEE Access 2019, 7, 44097–44134. [Google Scholar] [CrossRef]
- Wu, B.; Zhou, J.; Ji, X.; Yin, Y.; Shen, X. An ameliorated teaching-learning-based optimization algorithm based study of image segmentation for multilevel thresholding using Kapur’s entropy and Otsu’s between class variance. Inf. Sci. 2020, 533, 72–107. [Google Scholar] [CrossRef]
- Pare, S.; Bhandari, A.K.; Kumar, A.; Singh, G.K. Renyi’s entropy and bat algorithm based color image multilevel thresholding. Mach. Intell. Signal Anal. 2018, 748, 71–84. [Google Scholar]
- Zhao, S.; Wang, P.; Heidari, A.A.; Chen, H.; Turabieh, H.; Mafarja, M.; Li, C. Multilevel threshold image segmentation with diffusion association slime mould algorithm and Renyi’s entropy for chronic obstructive pulmonary disease. Comput. Biol. Med. 2021, 134, 104427. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Dhawale, D.; Kamboj, V.K.; Anand, P. An effective solution to numerical and multi-disciplinary design optimization problems using chaotic slime mold algorithm. Eng. Comput. 2021, 1–39. [Google Scholar] [CrossRef]
- Mostafa, M.; Rezk, H.; Aly, M.; Ahmed, E.M. A new strategy based on slime mould algorithm to extract the optimal model parameters of solar PV panel. Sustain. Energy Techn. 2020, 42, 100849. [Google Scholar] [CrossRef]
- Hassan, M.H.; Kamel, S.; Abualigah, L.; Eid, A. Development and application of slime mould algorithm for optimal economic emission dispatch. Expert Syst. Appl. 2021, 182, 115205. [Google Scholar] [CrossRef]
- Ewees, A.A.; Abualigah, L.; Yousri, D.; Algamal, Z.Y.; Al-qaness, M.A.A.; Ibrahim, R.A.; Abd Elaziz, M. Improved slime mould algorithm based on firefly algorithm for feature selection: A case study on QSAR model. Eng. Comput. 2021, 1–5. [Google Scholar] [CrossRef]
- Jensi, R.; Jiji, G.W. An enhanced particle swarm optimization with levy flight for global optimization. Appl. Soft Comput. 2016, 43, 248–261. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, B. A novel ant colony optimization algorithm with levy flight. IEEE Access 2020, 8, 67205–67213. [Google Scholar] [CrossRef]
- Tizhoosh, H.R. Opposition-based learning: A new scheme for machine intelligence. In Proceedings of the Computational Intelligence for Modelling, Control & Automation, Vienna, Austria, 28–30 November 2005. [Google Scholar]
- Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M.A. Quasi-oppositional differential evolution. In Proceedings of the IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007. [Google Scholar]
- Kullback, S. Information Theory and Statistics; Dover: New York, NY, USA, 1968. [Google Scholar]
- Yin, P. Multilevel minimum cross entropy threshold selection based on particle swarm optimization. Appl. Math. Comput. 2007, 184, 503–513. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y.; Liu, J. Dynamic sine cosine algorithm for large-scale global optimization problems. Expert Syst. Appl. 2021, 177, 114950. [Google Scholar] [CrossRef]
- Reda, M.; Elhosseini, M.; Haikal, A.; Badawy, M. A novel cuckoo search algorithm with adaptive discovery probability based on double Mersenne numbers. Neural. Comput. Appl. 2021, 33, 16377–16402. [Google Scholar] [CrossRef]
- Houssein, E.H.; Hussain, K.; Abualigah, L.; Elaziz, M.A.; Alomoush, W.; Dhiman, G.; Djenouri, Y.; Cuevas, E. An improved opposition-based marine predators algorithm for global optimization and multilevel thresholding image segmentation. Knowl.-Based Syst. 2021, 229, 107348. [Google Scholar] [CrossRef]
- Khairuzzaman, A.K.; Chaudhury, S. Masi entropy based multilevel thresholding for image segmentation. Multimed. Tools Appl. 2019, 78, 33573–33591. [Google Scholar] [CrossRef]
- Bhandari, A.K.; Kumar, A.; Chaudhary, S.; Singh, G.K. A novel color image multilevel thresholding based segmentation using nature inspired optimization algorithms. Expert Syst. Appl. 2016, 63, 112–133. [Google Scholar] [CrossRef]
Function | Dim | Range | fmin |
---|---|---|---|
30 | [−100,100] | 0 | |
30 | [−10,10] | 0 | |
30 | [−100,100] | 0 | |
30 | [−100,100] | 0 | |
30 | [−30,30] | 0 | |
30 | [−100,100] | 0 | |
30 | [−1.28,1.28] | 0 |
Function | Dim | Range | fmin |
---|---|---|---|
30 | [−500,500] | −12,569.487 | |
30 | [−5.12,5.12] | 0 | |
30 | [−32,32] | 0 | |
30 | [−600,600] | 0 | |
30 | [−50,50] | 0 | |
30 | [−50,50] | 0 |
Function | Dim | Range | fmin |
---|---|---|---|
2 | [−65,65] | 0.998 | |
4 | [−5,5] | 0.00030 | |
2 | [−5,5] | −1.0316 | |
2 | [−5,5] | 0.398 | |
2 | [−2,2] | 3 | |
3 | [−1,2] | −3.86 | |
6 | [0,1] | −3.32 | |
4 | [0,10] | −10.1532 | |
4 | [0,10] | −10.4028 | |
4 | [0,10] | −10.5363 |
Algorithm | Parameters |
---|---|
SMA [35] | z = 0.03 |
ROA [36] | c = 0.1 |
AOA [32] | α = 5; μ = 0.5; |
AO [33] | U = 0.00565; c = 10; ω = 0.005; α = 0.1; δ = 0.1; |
SSA [30] | c1 = [1,0]; c2∈[0,1]; c3∈[0,1] |
WOA [29] | a1 = [2,0]; a2 = [−1,−2]; b = 1 |
SCA [31] | a = [2,0] |
Function | ESMA | SMA | ROA | AOA | AO | SSA | WOA | SCA | |
---|---|---|---|---|---|---|---|---|---|
F1 | Mean | 0.00 × 10+00 | 3.83 × 10−320 | 5.93× 10−323 | 2.05× 10−13 | 1.19 × 10−104 | 1.31 × 10−07 | 2.30 × 10−68 | 2.25 × 10+01 |
Std | 0.00 × 10+00 | 0.00 × 1000 | 0.00 × 1000 | 1.12 × 10−12 | 6.49 × 10−104 | 1.15 × 10−07 | 1.26 × 10−67 | 6.73 × 10+01 | |
F2 | Mean | 1.12 × 10−188 | 1.68 × 10−148 | 6.68 × 10−162 | 0.00 × 10+00 | 2.45 × 10−53 | 1.96 × 10+00 | 3.57 × 10−52 | 1.84 × 10−02 |
Std | 0.00 × 10+00 | 9.20 × 10−148 | 3.61 × 10−161 | 0.00 × 10+00 | 1.34 × 10−52 | 1.49 × 10+00 | 8.24 × 10−52 | 3.52 × 10−02 | |
F3 | Mean | 0.00 × 10+00 | 3.03 × 10−285 | 5.68 × 10−286 | 3.47 × 10−03 | 3.16 × 10−97 | 1.66 × 10+03 | 4.50 × 10+04 | 1.04 × 10+04 |
Std | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | 8.24 × 10−03 | 1.73 × 10−96 | 1.32 × 10+03 | 1.64 × 10+04 | 5.62 × 10+03 | |
F4 | Mean | 5.48 × 10−222 | 9.79 × 10−161 | 2.33 × 10−153 | 2.62 × 10−02 | 3.78 × 10−53 | 1.13 × 10+01 | 5.27 × 10+01 | 3.50 × 10+01 |
Std | 0.00 × 10+00 | 5.08 × 10−160 | 1.27 × 10−152 | 2.02 × 10−02 | 2.07 × 10−52 | 2.92 × 10+00 | 2.75 × 10+01 | 1.48 × 10+01 | |
F5 | Mean | 3.79 × 10−03 | 6.04 × 10+00 | 2.71 × 10+01 | 2.83 × 10+01 | 4.02 × 10−03 | 1.78 × 10+02 | 2.79 × 10+01 | 9.83 × 10+04 |
Std | 2.33 × 10−03 | 1.01 × 10+01 | 4.41 × 10−01 | 4.22 × 10−01 | 7.30 × 10−03 | 3.08 × 10+02 | 4.92 × 10−01 | 1.99 × 10+05 | |
F6 | Mean | 5.80 × 10−07 | 6.08 × 10−03 | 9.77 × 10−02 | 3.08 × 10+00 | 9.27 × 10−05 | 1.71 × 10−07 | 3.71 × 10−01 | 1.26 × 10+01 |
Std | 1.76 × 10−07 | 3.84 × 10−03 | 1.04 × 10−01 | 3.20 × 10−01 | 1.26 × 10−04 | 1.50 × 10−07 | 2.29 × 10−01 | 1.02 × 10+01 | |
F7 | Mean | 5.24 × 10−05 | 1.84 × 10−04 | 1.48 × 10−04 | 5.37 × 10−05 | 7.57 × 10−05 | 1.61 × 10−01 | 4.74 × 10−03 | 9.19 × 10−02 |
Std | 4.96 × 10−05 | 1.50 × 10−04 | 1.27 × 10−04 | 4.21 × 10−05 | 7.75 × 10−05 | 7.12 × 10−02 | 6.51 × 10−03 | 1.01 × 10−01 | |
F8 | Mean | −1.26 × 10+04 | −1.26 × 10+04 | −1.24 × 10+04 | −5.20 × 10+03 | −8.88 × 10+03 | −7.34 × 10+03 | −1.03 × 10+04 | −3.72 × 10+03 |
Std | 4.07 × 10−03 | 3.91 × 10−01 | 4.39 × 10+02 | 4.69 × 10+02 | 3.74 × 10+03 | 6.61 × 10+02 | 2.01 × 10+03 | 2.65 × 10+02 | |
F9 | Mean | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | 5.79 × 10+01 | 4.11 × 10+00 | 4.28 × 10+01 |
Std | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | 1.87 × 10+01 | 2.25 × 10+01 | 3.24 × 10+01 | |
F10 | Mean | 8.88 × 10−16 | 8.88 × 10−16 | 8.88 × 10−16 | 8.88 × 10−16 | 8.88 × 10−16 | 2.77 × 10+00 | 4.80 × 10−15 | 1.26 × 10+01 |
Std | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | 8.52 × 10−01 | 2.35 × 10−15 | 8.96 × 10+00 | |
F11 | Mean | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | 1.78 × 10−02 | 0.00 × 10+00 | 9.69 × 10−01 |
Std | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | 0.00 × 10+00 | 1.23 × 10−02 | 0.00 × 10+00 | 3.69 × 10−01 | |
F12 | Mean | 2.18 × 10−05 | 4.44 × 10−03 | 1.04 × 10−02 | 4.99 × 10−01 | 2.64 × 10−06 | 6.84 × 10+00 | 2.53 × 10−02 | 2.92 × 10+05 |
Std | 7.96 × 10−05 | 7.53 × 10−03 | 5.91 × 10−03 | 4.80 × 10−02 | 5.61 × 10−06 | 3.30 × 10+00 | 1.62 × 10−02 | 1.19 × 10+06 | |
F13 | Mean | 3.62 × 10−07 | 5.78 × 10−03 | 2.25 × 10−01 | 2.83 × 10+00 | 1.99 × 10−05 | 1.56 × 10+01 | 5.31 × 10−01 | 4.50 × 10+04 |
Std | 1.69 × 10−07 | 5.70 × 10−03 | 1.51 × 10−01 | 1.08 × 10−01 | 3.79 × 10−05 | 1.47 × 10+01 | 2.84 × 10−01 | 1.76 × 10+05 | |
F14 | Mean | 9.98 × 10−01 | 9.98 × 10−01 | 4.45 × 10+00 | 9.54 × 10+00 | 2.50 × 10+00 | 1.10 × 10+00 | 2.12 × 10+00 | 2.25 × 10+00 |
Std | 5.17 × 10−16 | 6.55 × 10−13 | 4.85 × 10+00 | 4.22 × 10+00 | 3.33 × 10+00 | 4.00 × 10−01 | 2.12 × 10+00 | 2.49 × 10+00 | |
F15 | Mean | 6.07 × 10−04 | 5.57 × 10−04 | 4.23 × 10−04 | 1.80 × 10−02 | 4.89 × 10−04 | 2.92 × 10−03 | 5.83 × 10−04 | 8.49 × 10−04 |
Std | 2.67 × 10−04 | 2.83 × 10−04 | 2.92 × 10−04 | 2.86 × 10−02 | 3.29 × 10−04 | 5.93 × 10−03 | 3.84 × 10−04 | 2.32 × 10−04 | |
F16 | Mean | −1.03 × 10+00 | −1.03 × 10+00 | −1.03 × 10+00 | −1.03 × 10+00 | −1.03 × 10+00 | −1.03 × 10+00 | −1.03 × 10+00 | −1.03 × 10+00 |
Std | 7.70 × 10−15 | 3.95 × 10−10 | 5.90 × 10−08 | 1.65 × 10−07 | 3.69 × 10−04 | 4.13 × 10−14 | 1.32 × 10−09 | 4.90 × 10−05 | |
F17 | Mean | 3.98 × 10−01 | 3.98 × 10−01 | 3.98 × 10−01 | 3.98 × 10−01 | 3.98 × 10−01 | 3.98 × 10−01 | 3.98 × 10−01 | 4.00 × 10−01 |
Std | 2.82 × 10−13 | 2.77 × 10−08 | 4.26 × 10−06 | 8.49 × 10−08 | 2.67 × 10−04 | 9.08 × 10−15 | 5.79 × 10−06 | 2.15 × 10−03 | |
F18 | Mean | 1.02 × 10+01 | 3.00 × 10+00 | 3.00 × 10+00 | 1.02 × 10+01 | 3.03 × 10+00 | 3.00 × 10+00 | 3.00 × 10+01 | 3.00 × 10+00 |
Std | 1.21 × 10+01 | 7.33 × 10−11 | 6.72 × 10−05 | 1.21 × 10+01 | 2.65 × 10−02 | 1.90 × 10−13 | 4.08 × 10−05 | 2.37 × 10−04 | |
F19 | Mean | −3.86 × 10+00 | −3.86 × 10+00 | −3.86 × 10+00 | −3.85 × 10+00 | −3.85 × 10+00 | −3.86 × 10+00 | −3.83 × 10+00 | −3.85 × 10+00 |
Std | 1.85 × 10−11 | 5.00 × 10−07 | 2.07 × 10−03 | 6.68 × 10−03 | 9.15 × 10−03 | 6.05 × 10−10 | 1.40 × 10−01 | 1.17 × 10−02 | |
F20 | Mean | −3.26 × 10+00 | −3.25 × 10+00 | −3.28 × 10+00 | −3.06 × 10+00 | −3.17 × 10+00 | −3.23 × 10+00 | −3.18 × 10+00 | −2.86 × 10+00 |
Std | 3.05 × 10−02 | 5.96 × 10−02 | 6.88 × 10−02 | 9.11 × 10−02 | 7.18 × 10−02 | 5.77 × 10−02 | 1.88 × 10−01 | 4.10 × 10−01 | |
F21 | Mean | −1.02 × 10+01 | −1.02 × 10+01 | −1.01 × 10+01 | −3.47 × 10+00 | −1.01 × 10+01 | −7.73 × 10+00 | −8.03 × 10+00 | −2.73 × 10+00 |
Std | 5.52 × 10−08 | 3.30 × 10−04 | 1.25 × 10−02 | 1.24 × 10+00 | 3.68 × 10−02 | 3.32 × 10+00 | 2.89 × 10+00 | 2.28 × 10+00 | |
F22 | Mean | −1.04 × 10+01 | −1.04 × 10+01 | −1.04 × 10+01 | −4.00 × 10+00 | −1.04 × 10+01 | −8.42 × 10+00 | −7.67 × 10+00 | −2.86 × 10+00 |
Std | 5.77 × 10−08 | 3.07 × 10−04 | 1.58 × 10−02 | 1.51 × 10+00 | 9.40 × 10−03 | 3.14 × 10+00 | 3.54 × 10+00 | 1.77 × 10+00 | |
F23 | Mean | −1.05 × 10+01 | −1.05 × 10+01 | −1.05 × 10+01 | −3.97 × 10+00 | −1.05 × 10+01 | −8.00 × 10+00 | −6.60 × 10+00 | −3.31 × 10+00 |
Std | 3.17 × 10−08 | 3.92 × 10−04 | 1.94 × 10−02 | 1.63 × 10+00 | 2.59 × 10−02 | 3.47 × 10+00 | 3.32 × 10+00 | 1.98 × 10+00 |
Function | ESMA vs. | ||||||
---|---|---|---|---|---|---|---|
SMA | ROA | AOA | AO | SSA | WOA | SCA | |
F1 | 3.51 × 10−01 | 3.97 × 10−02 | 6.87 × 10−07 | 6.87 × 10−07 | 6.87 × 10−07 | 6.87 × 10−07 | 6.87 × 10−07 |
F2 | 2.33 × 10−05 | 3.39 × 10−06 | 3.39 × 10−06 | 3.39 × 10−06 | 3.39 × 10−06 | 3.39 × 10−06 | 3.39 × 10−06 |
F3 | 1.64 × 10−01 | 6.87 × 10−07 | 6.87 × 10−07 | 6.87 × 10−07 | 6.87 × 10−07 | 6.87 × 10−07 | 6.87 × 10−07 |
F4 | 1.92 × 10−05 | 3.36 × 10−06 | 3.36 × 10−06 | 3.36 × 10−06 | 3.36 × 10−06 | 3.36 × 10−06 | 3.36 × 10−06 |
F5 | 3.39 × 10−06 | 3.39 × 10−06 | 3.39 × 10−06 | 2.15 × 10−03 | 3.39 × 10−06 | 3.39 × 10−06 | 3.39 × 10−06 |
F6 | 3.39 × 10−06 | 3.39 × 10−06 | 3.39 × 10−06 | 3.39 × 10−06 | 2.23 × 10−04 | 3.39 × 10−06 | 3.39 × 10−06 |
F7 | 2.02 × 10−02 | 1.98 × 10−01 | 4.81 × 10−01 | 1.46 × 10−01 | 3.39 × 10−06 | 3.39 × 10−06 | 3.39 × 10−06 |
F8 | 5.05 × 10−06 | 4.02 × 10−05 | 3.39 × 10−06 | 3.39 × 10−06 | 3.39 × 10−06 | 3.39 × 10−06 | 3.39 × 10−06 |
F9 | NaN | NaN | 2.54 × 10−06 | NaN | 6.87 × 10−07 | 1.64 × 10−02 | 6.87 × 10−07 |
F10 | NaN | NaN | 6.87 × 10−07 | NaN | 6.87 × 10−07 | 2.10 × 10−04 | 6.87 × 10−07 |
F11 | NaN | NaN | 6.87 × 10−07 | NaN | 6.87 × 10−07 | 1.64 × 10−01 | 6.87 × 10−07 |
F12 | 5.74 × 10−05 | 3.39 × 10−06 | 3.39 × 10−06 | 2.79 × 10−02 | 3.39 × 10−06 | 3.39 × 10−06 | 3.39 × 10−06 |
F13 | 3.39 × 10−06 | 3.39 × 10−06 | 3.39 × 10−06 | 5.74 × 10−05 | 3.39 × 10−06 | 3.39 × 10−06 | 3.39 × 10−06 |
F14 | 2.19 × 10−06 | 2.19 × 10−06 | 2.18 × 10−06 | 2.19 × 10−06 | 1.23 × 10−03 | 2.19 × 10−06 | 2.19 × 10−06 |
F15 | 7.72 × 10−01 | 1.99 × 10−01 | 1.25 × 10−01 | 4.64 × 10−02 | 1.28 × 10−02 | 5.90 × 10−01 | 1.89 × 10−04 |
F16 | 3.37 × 10−06 | 3.37 × 10−06 | 3.37 × 10−06 | 3.37 × 10−06 | 7.72 × 10−04 | 3.37 × 10−06 | 3.37 × 10−06 |
F17 | 3.37 × 10−06 | 3.37 × 10−06 | 3.37 × 10−06 | 3.37 × 10−06 | 2.41 × 10−04 | 3.37 × 10−06 | 3.37 × 10−06 |
F18 | 1.35 × 10−01 | 7.72 × 10−01 | 5.07 × 10−01 | 7.72 × 10−01 | 3.69 × 10−03 | 7.72 × 10−01 | 7.72 × 10−01 |
F19 | 3.39 × 10−06 | 3.39 × 10−06 | 3.39 × 10−06 | 3.39 × 10−06 | 2.79 × 10−05 | 3.39 × 10−06 | 3.39 × 10−06 |
F20 | 3.69 × 10−03 | 3.69 × 10−03 | 3.10 × 10−02 | 3.69 × 10−03 | 5.45 × 10−03 | 8.97 × 10−03 | 3.39 × 10−06 |
F21 | 3.39 × 10−06 | 3.39 × 10−06 | 3.39 × 10−06 | 3.39 × 10−06 | 3.62 × 10−01 | 3.39 × 10−06 | 3.39 × 10−06 |
F22 | 3.39 × 10−06 | 3.39 × 10−06 | 3.39 × 10−06 | 3.39 × 10−06 | 5.45 × 10−03 | 3.39 × 10−06 | 3.39 × 10−06 |
F23 | 3.39 × 10−06 | 3.39 × 10−06 | 3.39 × 10−06 | 3.39 × 10−06 | 5.45 × 10−03 | 3.39 × 10−06 | 3.39 × 10−06 |
Image | nTh = 4 | nTh = 6 | nTh = 8 | nTh = 10 |
---|---|---|---|---|
Lena | | | | |
| | | | |
Baboon | | | | |
| | | | |
Butterfly | | | | |
| | | | |
Peppers | | | | |
| | | | |
Tank | | | | |
| | | | |
House | | | | |
| | | | |
Cameraman | | | | |
| | | | |
Pirate | | | | |
| | | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.; Jia, H.; Abualigah, L.; Altalhi, M. Enhanced Slime Mould Algorithm for Multilevel Thresholding Image Segmentation Using Entropy Measures. Entropy 2021, 23, 1700. https://doi.org/10.3390/e23121700
Lin S, Jia H, Abualigah L, Altalhi M. Enhanced Slime Mould Algorithm for Multilevel Thresholding Image Segmentation Using Entropy Measures. Entropy. 2021; 23(12):1700. https://doi.org/10.3390/e23121700
Chicago/Turabian StyleLin, Shanying, Heming Jia, Laith Abualigah, and Maryam Altalhi. 2021. "Enhanced Slime Mould Algorithm for Multilevel Thresholding Image Segmentation Using Entropy Measures" Entropy 23, no. 12: 1700. https://doi.org/10.3390/e23121700
APA StyleLin, S., Jia, H., Abualigah, L., & Altalhi, M. (2021). Enhanced Slime Mould Algorithm for Multilevel Thresholding Image Segmentation Using Entropy Measures. Entropy, 23(12), 1700. https://doi.org/10.3390/e23121700