Human Synchronization Maps—The Hybrid Consciousness of the Embodied Mind
Abstract
:Science is built up with facts, as a house is with stones.However, a collection of facts is no more a science than a heap of stones is a house.Henri Poincaré, Science and Hypothesis
1. Introduction. Complexity, Noise, and Orders
2. Materials and Methods. Biosemiotics Pattern Analysis
3. Results. Hybrid Couplings and Synchronizations
4. Discussion. The Chimera States in Human Interactions
5. Conclusions: From Determinism to Statistical Dynamics
- (a)
- Epistemic probability of all the possible states.
- (b)
- Empirical probability in repeated experiments.
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Orsucci, F.; Musmeci, N.; Aas, B.; Schiepek, G.; Reda, M.A.; Canestri, L.; de Felice, G. Synchronization analysis of language and physiology in human dyads. Nonlinear Dyn. Psychol. Life Sci. 2016, 20, 167–191. [Google Scholar]
- Orsucci, F. Towards the integration of semiotic and physiological dynamics: From nonlinear dynamics to quantum fields. In Selbstorganization–Ein Paradigma für die Humanwissenschaften; Springer: Wiesbaden, Germany, 2020; pp. 153–175. [Google Scholar]
- Bansal, K.; Garcia, J.O.; Tompson, S.H.; Verstynen, T.; Vettel, J.M.; Muldoon, S.F. Cognitive chimera states in human brain networks. Sci. Adv. 2019, 5, eaau8535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shine, J.M.; Breakspear, M.; Bell, P.T.; Martens, K.A.E.; Shine, R.; Koyejo, O.; Sporns, O.; Poldrack, R.A. Human cognition involves the dynamic integration of neural activity and neuromodulatory systems. Nat. Neurosci. 2019, 22, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Hizanidis, J.; Kouvaris, N.E.; Zamora-López, G.; Díaz-Guilera, A.; & Antonopoulos, C.G. Chimera-like states in modular neural networks. Sci. Rep. 2016, 6, 1–11. [Google Scholar]
- Glass, L. Synchronization and rhythmic processes in physiology. Nature 2001, 410, 277–284. [Google Scholar] [CrossRef]
- Orsucci, F.; Giuliani, A.; Webber, C.; Fonagy, P. Combinatorics and synchronization in natural semiotics. Phys. A Stat. Mech. Appl. 2006, 361, 665–676. [Google Scholar] [CrossRef]
- Orsucci, F.; Petrosino, R.; Paoloni, G.; Canestri, L.; Conte, E.; Reda, M.A.; Fulcheri, M. Prosody and synchronization in cognitive neuroscience. EPJ Nonlinear Biomed. Phys. 2013, 1, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wiltshire, T.J.; Philipsen, J.S.; Trasmundi, S.B.; Jensen, T.W.; Steffensen, S.V. Interpersonal coordination dynamics in psychotherapy: A systematic review. Cognit. Ther. Res. 2020, 44, 752–773. [Google Scholar] [CrossRef]
- Tschacher, W.; Meier, D. Physiological synchrony in psychotherapy sessions. Psychother. Res. 2020, 30, 558–573. [Google Scholar] [CrossRef]
- Repp, B.H.; Su, Y.-H. Sensorimotor synchronization: A review of recent research (2006–2012). Psychon. Bull. Rev. 2013, 20, 403–452. [Google Scholar] [CrossRef] [Green Version]
- Delaherche, E.; Chetouani, M.; Mahdhaoui, A.; Saint-Georges, C.; Viaux, S.; Cohen, D. Interpersonal synchrony: A survey of evaluation methods across disciplines. IEEE Trans. Affect. Comput. 2012, 3, 349–365. [Google Scholar] [CrossRef] [Green Version]
- Schiepek, G.; Fricke, B.; Kaimer, P. Synergetics of psychotherapy. In Self-Organization and Clinical Psychology; Springer: Berlin/Heidelberg, Germany, 1992; pp. 239–267. [Google Scholar]
- Gelo, O.C.; Salvatore, S. A dynamic systems approach to psychotherapy: A meta-theoretical framework for explaining psychotherapy change processes. J. Couns. Psychol. 2016, 63, 379. [Google Scholar] [CrossRef]
- Mondada, L. Challenges of multimodality: Language and the body in social interaction. J. Socioling. 2016, 20, 336–366. [Google Scholar] [CrossRef]
- Mondada, L. Contemporary issues in conversation analysis: Embodiment and materiality, multimodality and multisensoriality in social interaction. J. Pragmat. 2019, 145, 47–62. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Champaign, IL, USA, 1948. [Google Scholar]
- Shannon, C.E. Prediction and Entropy of Printed English. Bell Syst. Tech. J. 1951, 30, 50–64. [Google Scholar] [CrossRef]
- Schreiber, T. Interdisciplinary application of nonlinear time series methods. Phys. Rep. 1999, 308, 1–64. [Google Scholar] [CrossRef] [Green Version]
- Maturana, H.R.; Varela, F.J. Autopoiesis and Cognition the Realisation of the Living; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1980. [Google Scholar]
- Strogatz, S.H. Sync the Emerging Science of Spontaneous Order; Hyperion: New York, NY, USA, 2003. [Google Scholar]
- Pecora, L.M.; Carroll, T.L. Synchronization in chaotic systems. Phys. Rev. Lett. 1990, 64, 821–824. [Google Scholar] [CrossRef] [PubMed]
- Ott, E.; Grebogi, C.; Yorke, J.A. Controlling chaotic dynamical systems. In Chaos: Soviet-American Perspective on Nonlinear Science; American Institute of Physics: Melville, NY, USA, 1990; pp. 153–172. [Google Scholar]
- Pyragas, K. Weak and strong synchronization of chaos. Phys. Rev. E Stat. Phys. 1996, 54, R4508–R4511. [Google Scholar] [CrossRef] [Green Version]
- Eckmann, J.-P.; Kamphorst, S.O.; Ruelle, D. Recurrence plots of dynamical systems. Europhys. Lett. 1987, 4, 973. [Google Scholar] [CrossRef] [Green Version]
- Webber, C.L.; Zbilut, J.P. Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 1994, 76, 965–973. [Google Scholar] [CrossRef]
- Giuliani, A.; Benigni, R.; Zbilut, J.P.; Webber, C.L.; Sirabella, P.; Colosimo, A. Nonlinear signal analysis methods in the elucidation of protein sequence-structure relationships. Chem. Rev. 2002, 102, 1471–1492. [Google Scholar] [CrossRef] [PubMed]
- Manetti, C.; Ceruso, M.A.; Giuliani, A.; Webber, C.L.; Zbilut, J.P. Recurrence quantification analysis in molecular dynamics. Ann. N. Y. Acad. Sci. 1999, 879, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Webber, C.L.; Zbilut, J.P. Recurrence quantification analysis of nonlinear dynamical systems. Tutor. Contemp. Nonlinear Methods Behav. Sci. 2005, 94, 26–94. [Google Scholar]
- Marwan, N. A historical review of recurrence plots. Eur. Phys. J. Spec. Top. 2008, 164, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Webber, C.L.; Marwan, N.; Facchini, A.; Giuliani, A. Simpler methods do it better: Success of Recurrence Quantification Analysis as a general-purpose data analysis tool. Phys. Lett. A 2009, 373, 3753–3756. [Google Scholar] [CrossRef]
- Webber, C.L.; Marwan, N. Recurrence Quantification Analysis. In Theory and Best Practices; Springer: New York, NY, USA, 2015. [Google Scholar]
- Orsucci, F.; Walter, K.; Giuliani, A.; Webber, C.L., Jr.; Zbilut, J.P. Orthographic Structuring of Human Speech and Texts: Linguistic Application of Recurrence Quantification Analysis. arXiv 1997, arXiv:cmp-lg/9712010. [Google Scholar]
- Keller, E.; Tschacher, W. Prosodic and gestural expression of interactional agreement. In Verbal and Nonverbal Communication Behaviors; Springer: Berlin/Heidelberg, Germany, 2007; pp. 85–98. [Google Scholar]
- Shockley, K.; Richardson, D.C.; Dale, R. Conversation and coordinative structures. Top. Cogn. Sci. 2009, 1, 305–319. [Google Scholar] [CrossRef] [Green Version]
- Fusaroli, R.; Konvalinka, I.; Wallot, S. Analyzing Social Interactions: The Promises and Challenges of Using Cross Recurrence Quantification Analysis. In Translational Recurrences; Springer: Berlin/Heidelberg, Germany, 2014; pp. 137–155. [Google Scholar]
- Orsucci, F. Mind force theory: Hyper-network dynamics in neuroscience. Chaos Complex. Lett. 2009, 4, 1–26. [Google Scholar]
- Freeman, W.J. On the Nature and Neural Mechanisms of Mind Force. Chaos Complex. Lett. 2012, 6, 7. [Google Scholar]
- Orsucci, F. Human Dynamics: A Complexity Science Open Handbook; Nova Science Publishers Inc.: New York, NY, USA, 2016. [Google Scholar]
- Pichon, S.; Kell, C.A. Affective and sensorimotor components of emotional prosody generation. J. Neurosci. 2013, 33, 1640–1650. [Google Scholar] [CrossRef]
- Koolagudi, S.G.; Rao, K.S. Emotion recognition from speech: A review. Int. J. Speech Technol. 2012, 15, 99–117. [Google Scholar] [CrossRef]
- Kuramoto, Y.; Battogtokh, D. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. arXiv 2002, arXiv:Cond-Mat/0210694. [Google Scholar]
- Smirnov, L.; Osipov, G.; Pikovsky, A. Chimera patterns in the Kuramoto–Battogtokh model. J. Phys. A Math. Theor. 2017, 50, 08LT01. [Google Scholar] [CrossRef] [Green Version]
- Abrams, D.M.; Strogatz, S.H. Chimera states for coupled oscillators. Phys. Rev. Lett. 2004, 93, 174102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panaggio, M.J.; Abrams, D.M. Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 2015, 28, R67. [Google Scholar] [CrossRef]
- Schöll, E.; Zakharova, A.; Andrzejak, R.G. Chimera states in complex networks. Front. Appl. Math. Stat. 2019, 5, 62. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z. A brief review of chimera state in empirical brain networks. Front. Physiol. 2020, 11, 724. [Google Scholar] [CrossRef] [PubMed]
- Cavers, M.; Vasudevan, K. Spatio-temporal complex Markov Chain (SCMC) model using directed graphs: Earthquake sequencing. Pure Appl. Geophys. 2015, 172, 225–241. [Google Scholar] [CrossRef] [Green Version]
- Vasudevan, K.; Cavers, M.; Ware, A. Earthquake sequencing: Chimera states with Kuramoto model dynamics on directed graphs. Nonlinear Process. Geophys. 2015, 22, 499–512. [Google Scholar] [CrossRef] [Green Version]
- Laing, C.R. Chimera states in heterogeneous networks. Chaos Interdiscip. J. Nonlinear Sci. 2009, 19, 013113. [Google Scholar] [CrossRef] [Green Version]
- Makarov, V.V.; Kundu, S.; Kirsanov, D.V.; Frolov, N.S.; Maksimenko, V.A.; Ghosh, D.; Dana, S.K.; Hramov, A.E. Multiscale interaction promotes chimera states in complex networks. Commun. Nonlinear Sci. Numer. Simul. 2019, 71, 118–129. [Google Scholar] [CrossRef]
- Liégeois, R.; Ziegler, E.; Phillips, C.; Geurts, P.; Gómez, F.; Bahri, M.A.; Yeo, B.T.; Soddu, A.; Vanhaudenhuyse, A.; Laureys, S.; et al. Cerebral functional connectivity periodically (de) synchronises with anatomical constraints. Brain. Struct. Funct. 2016, 221, 2985–2997. [Google Scholar] [CrossRef]
- Shine, J.M. Neuromodulatory influences on integration and segregation in the brain. Trends Cogn. Sci. 2019, 23, 572–583. [Google Scholar] [CrossRef] [PubMed]
- Chouzouris, T.; Omelchenko, I.; Zakharova, A.; Hlinka, J.; Jiruska, P.; Schöll, E. Chimera states in brain networks: Empirical neural vs. modular fractal connectivity. Chaos: Interdiscip. J. Nonlinear Sci. 2018, 28, 045112. [Google Scholar] [CrossRef]
- Majhi, S.; Bera, B.K.; Ghosh, D.; Perc, M. Chimera states in neuronal networks: A review. Phys. Life Rev. 2019, 28, 100–121. [Google Scholar] [CrossRef]
- Kolmogorov, A.N.; Bharucha-Reid, A.T. Foundations of the theory of probability, Second English Edition; Courier Dover Publications: Mineola, NY, USA, 2018. [Google Scholar]
- Kleinbub, J.R.; Palmieri, A.; Orsucci, F.F.; Andreassi, S.; Musmeci, N.; Benelli, E.; Giuliani, A.; de Felice, G. Measuring empathy: A statistical physics grounded approach. Phys. A Stat. Mech. Appl. 2019, 526, 120979. [Google Scholar] [CrossRef]
- Giuliani, A.; Tsuchiya, M.; Yoshikawa, K. Self-organization of genome expression from embryo to terminal cell fate: Single-cell statistical mechanics of biological regulation. Entropy 2018, 20, 13. [Google Scholar] [CrossRef] [Green Version]
- Mojtahedi, M.; Skupin, A.; Zhou, J.; Castaño, I.G.; Leong-Quong, R.Y.; Chang, H.; Huang, S. Cell fate decision as high-dimensional critical state transition. PLoS Biol. 2016, 14, e2000640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, W.J. Mesoscopic neurodynamics: From neuron to brain. J. Physiol. Paris 2000, 94, 303–322. [Google Scholar] [CrossRef]
- Giuliani, A. Networks as a privileged way to develop mesoscopic level approaches in systems biology. Systems 2014, 2, 237–242. [Google Scholar] [CrossRef]
- Feldman, L.B. Morphological Aspects of Language Processing; Lawrence Erlbaum: Mahwah, NJ, USA, 1995. [Google Scholar]
- Martinčić-Ipšić, S.; Margan, D.; Meštrović, A. Multilayer network of language: A unified framework for structural analysis of linguistic subsystems. Phys. A Stat. Mech. Appl. 2016, 457, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.E.; Baggio, G. Modelling meaning composition from formalism to mechanism. Phil. Trans. R. Soc. 2020, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orsucci, F. Human Synchronization Maps—The Hybrid Consciousness of the Embodied Mind. Entropy 2021, 23, 1569. https://doi.org/10.3390/e23121569
Orsucci F. Human Synchronization Maps—The Hybrid Consciousness of the Embodied Mind. Entropy. 2021; 23(12):1569. https://doi.org/10.3390/e23121569
Chicago/Turabian StyleOrsucci, Franco. 2021. "Human Synchronization Maps—The Hybrid Consciousness of the Embodied Mind" Entropy 23, no. 12: 1569. https://doi.org/10.3390/e23121569
APA StyleOrsucci, F. (2021). Human Synchronization Maps—The Hybrid Consciousness of the Embodied Mind. Entropy, 23(12), 1569. https://doi.org/10.3390/e23121569