Hierarchical Classification of Event-Related Potentials for the Recognition of Gender Differences in the Attention Task
Abstract
:1. Introduction
- We propose a carefully designed original experimentation procedure enabling the acquisition of electroencephalography (EEG) signals in the human attention task. In contrast to many EEG-based classification studies, where the EEG datasets were acquired from open databases, we designed and ran a neurophysiological experiment. Thus we ensured complete control of the possible confounds that are unknown when using public databases, allowing us to detect gender differences using the proposed data mining technique;
- The theoretical contribution is the data mining method, which relies on the hierarchical segmentation and classification of ERPs. In particular, we transform the preprocessed ERPs to a multivariate time series. The time-series underlies segmentation, enabling the construction of a chain of classifiers yielding the targeted gender classification;
2. Literature Review
3. Materials and Methods
3.1. Problem Specification
3.2. The Proposed Method
- Acquisition of ERP signals. To cope with the stated problem, we discover M using a supervised type of learning, i.e., we induce M from sample data with the known classifications. Those sample data S are gathered through experiments. They are also used for the validation of the proposed approach;
- Data preprocessing. We preprocess the gathered data to form a d-dimensional multi-variate time series. This step leads to a reduction of the considered data. Note that by the data preprocessing we replace the problem of discovering M, by looking for a classifier that deals with the produced multivariate time series instead of the raw data gathered from the experiments. Therefore, the quality of data pre-processing is pivotal for the reliability of the proposed approach;
- Time series segmentation. We segment the previously produced time series in the time domain. Thus, we replace the problem of discovering by a more straightforward problem of constructing a classifier that, instead of dealing with the entire time series, classifies only a much shorter part (segment) of them. The issue that arises here and that we solve through computational experiments is the selection of the time segment that best suits the classification when combined with the classifier ;
- Bottom-level classification. Finally, we classify the selected segment of the time series by combining the classifications of each vector contained in that segment. It means we construct by combining the classifications delivered by a standard, state-of-the-art classifier denoted here as . The obstacle that we come across here is the selection of .
3.2.1. Acquisition of EEG Signal
3.2.2. Data Pre-Processing
3.2.3. Data Segmentation
3.2.4. Bottom-Level Classification of ERP Waveforms
4. Results and Discussion
4.1. Experimental Setup
4.2. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nielsen, M.W.; Stefanick, M.L.; Peragine, D.; Neilands, T.B.; Ioannidis, J.P.A.; Pilote, L.; Prochaska, J.J.; Cullen, M.R.; Einstein, G.; Klinge, I.; et al. Gender-related variables for health research. Biol. Sex Differ. 2021, 12, 23. [Google Scholar] [CrossRef]
- Rich-Edwards, J.W.; Kaiser, U.B.; Chen, G.L.; Manson, J.E.; Goldstein, J.M. Sex and Gender Differences Research Design for Basic, Clinical, and Population Studies: Essentials for Investigators. Endocr. Rev. 2018, 39, 424–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tannenbaum, C.; Ellis, R.P.; Eyssel, F.; Zou, J.; Schiebinger, L. Sex and gender analysis improves science and engineering. Nature 2019, 575, 137–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, K.; Peters, S.; Woodward, M.; Carcel, C.; Norton, R. Reporting sex and gender in medical research. Rep. Sex Gend. Med. Res. 2019, 393, 2038. [Google Scholar] [CrossRef] [Green Version]
- Luck, S.J. An Introduction to the Event-Related Potential Technique; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Conroy, M.A.; Polich, J. Normative variation of p3a and p3b from a large sample. J. Psychophysiol. 2007, 21, 22–32. [Google Scholar] [CrossRef]
- Hoffman, L.D.; Polich, J. P300, handedness, and corpus callosal size: Gender, modality, and task. Int. J. Psychophysiol. 1999, 31, 163–174. [Google Scholar] [CrossRef]
- Jaušovec, N.; Jaušovec, K. Gender related differences in visual and auditory processing of verbal and figural tasks. Brain Res. 2009, 1300, 135–145. [Google Scholar] [CrossRef]
- Jaušovec, N.; Jaušovec, K. Do women see things differently than men do? NeuroImage 2009, 45, 198–207. [Google Scholar] [CrossRef]
- Morita, Y.; Morita, K.; Yamamoto, M.; Waseda, Y.; Maeda, H. Effects of facial affect recognition on the auditory P300 in healthy subjects. Neurosci. Res. 2001, 41, 89–95. [Google Scholar] [CrossRef]
- Sangal, R.B.; Sangal, J.M. Topography of auditory and visual P300 in normal adults. Clin. Electroencephalogr. 1996, 27, 145–150. [Google Scholar] [CrossRef]
- Shelton, P.P.; Hartmann, A.M.; Allen, J. Seasonal photoperiod, gender, and P300. Biol. Psychol. 2002, 60, 151–171. [Google Scholar] [CrossRef]
- Steffensen, S.C.; Ohran, A.J.; Shipp, D.N.; Hales, K.; Stobbs, S.H.; Fleming, D.E. Gender-selective effects of the P300 and N400 components of the visual evoked potential. Vis. Res. 2008, 48, 917–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsolaki, A.; Kosmidou, V.; Hadjileontiadis, L.; Kompatsiaris, I.Y.; Tsolaki, M. Brain source localization of MMN, P300 and N400: Aging and gender differences. Brain Res. 2015, 1603, 32–49. [Google Scholar] [CrossRef] [PubMed]
- Vaquero, E.; Cardoso, M.J.; VÁZque, M.; GÓMez, C.M. Gender Differences in Event-Related Potentials during Visual-Spatial Attention. Int. J. Neurosci. 2004, 114, 541–557. [Google Scholar] [CrossRef]
- Polich, J.; Herbst, K.L. P300 as a clinical assay: Rationale, evaluation, and findings. Int. J. Psychophysiol. 2000, 38, 3–19. [Google Scholar] [CrossRef]
- Lukács, G.; Weiss, B.; Dalos, V.D.; Kilencz, T.; Tudja, S.; Csifcsák, G. The first independent study on the complex trial protocol version of the P300-based concealed information test: Corroboration of previous findings and highlights on vulnerabilities. Int. J. Psychophysiol. 2016, 110, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Lin, F.; Wu, Y.; Zhuang, Y. Human Gender Classification: A Review. Int. J. Biom. 2017, 8, 275–300. [Google Scholar] [CrossRef]
- Ghani, S.A.; Zaini, N.; Norhazman, H.; Yassin, I.M.; Sani, M.M. Classification of Frontal EEG Signals of Normal Subjects to Differentiate Gender by Using Artificial Neural Network. J. Telecommun. Electron. Comput. Eng. JTEC 2017, 9, 139–143. [Google Scholar]
- Hu, J. An approach to EEG-based gender recognition using entropy measurement methods. Knowl.-Based Syst. 2018, 140, 134–141. [Google Scholar] [CrossRef]
- Kaur, B.; Singh, D.; Roy, P.P. Age and gender classification using brain–computer interface. Neural Comput. Appl. 2019, 31, 5887–5900. [Google Scholar] [CrossRef]
- Kaushik, P.; Gupta, A.; Roy, P.P.; Dogra, D.P. EEG-Based Age and Gender Prediction Using Deep BLSTM-LSTM Network Model. IEEE Sens. J. 2019, 19, 2634–2641. [Google Scholar] [CrossRef]
- Li, J.; Deng, J.D.; De Ridder, D.; Adhia, D. Gender classification of EEG signals using a motif attribute classification ensemble. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8. [Google Scholar]
- Nguyen, P.; Tran, D.; Huang, X.; Ma, W. Age and gender classification using EEG paralinguistic features. In Proceedings of the 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), San Diego, CA, USA, 6–8 November 2013; pp. 1295–1298. [Google Scholar]
- Nguyen, P.; Tran, D.; Vo, T.; Huang, X.; Ma, W.; Phung, D. EEG-Based age and gender recognition using tensor decomposition and speech features. In Neural Information Processing; Springer: Berlin/Heidelberg, Germany, 2013; pp. 632–639. [Google Scholar]
- Van Putten, M.J.A.M.; Olbrich, S.; Arns, M. Predicting sex from brain rhythms with deep learning. Sci. Rep. 2018, 8, 3069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Hu, J. A hybrid model for EEG-based gender recognition. Cogn. Neurodyn. 2019, 13, 541–554. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Cao, Z.; Bai, Q. An evoked potential-guided deep learning brain representation for visual classification. In Neural Information Processing—27th International Conference, ICONIP 2020; Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2020; Volume 1333, pp. 54–61. [Google Scholar]
- Alam, M.E. Electroencephalographic Signal Processing and Classification Techniques for Noninvasive Motor Imagery Based Brain Computer Interface. Electron. Theses Diss. 2017, 1591, 1–98. [Google Scholar]
- Bae, X.G.Y.; Luck, S.J. Dissociable Decoding of Spatial Attention and Working Memory from EEG Oscillations and Sustained Potentials. J. Neurosci. 2018, 38, 409–422. [Google Scholar] [CrossRef] [Green Version]
- Bae, G.Y.; Luck, S.J. Reactivation of previous experiences in a working memory task. Psychol. Sci. 2019, 30, 587–595. [Google Scholar] [CrossRef]
- Al-Nafjan, A.; Alharthi, K.; Kurdi, H. Lightweight Building of an Electroencephalogram- Based Emotion Detection System. Brain Sci. 2020, 10, 781. [Google Scholar] [CrossRef]
- Bajaj, V.; Pachori, R.B. Human Emotion Classification from EEG Signals Using Multiwavelet Transform. In Proceedings of the 2014 International Conference on Medical Biometrics, Shenzhen, China, 30 May–1 June 2014; pp. 125–130. [Google Scholar]
- Jalilifard, A.; Pizzolato, E.B.; Islam, M.K. Emotion classification using single-channel scalp-EEG recording. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 845–849. [Google Scholar]
- Vaid, S.; Singh, P.; Kaur, C. Classification of Human Emotions using Multiwavelet Transform based Features and Random Forest Technique. Indian J. Sci. Technol. 2015, 8, 1–7. [Google Scholar] [CrossRef]
- Aldayel, M.; Ykhlef, M.; Al-Nafjan, A. Deep learning for EEG-Based preference classification in neuromarketing. Appl. Sci. 2020, 10, 1525. [Google Scholar] [CrossRef] [Green Version]
- De La Pava, I.; Álvarez, A.; Herrera, P.; Castellanos-Dominguez, G.; Orozco, A. Gender Effects on an EEG-Based Emotion Level Classification System. In Proceedings of the Iberoamerican Congress on Pattern Recognition, Madrid, Spain, 19–22 November 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 810–819. [Google Scholar]
- Bilalpur, M.; Kia, S.M.; Chawla, M.; Chua, T.S.; Subramanian, R. Gender and Emotion Recognition with Implicit User Signals. In Proceedings of the ICMI ’17: Proceedings of the 19th ACM International Conference on Multimodal Interaction, Glasgow, UK, 13–17 November 2017; pp. 379–387. [Google Scholar]
- Craik, A.; He, Y.; Contreras-Vidal, J. Deep learning for Electroencephalogram (EEG) classification tasks: A review. J. Neural Eng. 2019, 16, 031001. [Google Scholar] [CrossRef]
- Maciejewska, K.; Drzazga, Z. Differences in spatio-temporal distribution of the visual P3b event-related potential between young men and women. Acta Neurobiol. Exp. 2019, 79, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Duncan, C.C.; Barry, R.J.; Connolly, J.F.; Fischer, C.; Michie, P.T.; Näätänen, R.; Polich, J.; Reinvang, I.; Van Petten, C. Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin. Neurophysiol. 2009, 120, 1883–1908. [Google Scholar] [CrossRef] [PubMed]
- Pontifex, M.; Gwizdala, K.; Parks, A.; Billinger, M.; Brunner, C. Variability of ICA decomposition may impact EEG signals when used to remove eyeblink artifacts. Psychophysiology 2017, 54, 386–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morabito, F. Independent component analysis and feature extraction techniques for NDT data. Mater. Eval. 2000, 58, 85–92. [Google Scholar]
- Calhoun, V.D.; Liu, J.; Adalı, T. A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage 2009, 45, S163–S172. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. Do we Need Hundreds of Classifiers to Solve Real World Classification Problems? J. Mach. Learn. Res. 2014, 15, 3133–3181. [Google Scholar]
- Zhang, Z. Introduction to machine learning: K-nearest neighbors. Ann. Transl. Med. 2016, 4, 218. [Google Scholar] [CrossRef] [Green Version]
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Prentice Hall: Hoboken, NJ, USA, 2010. [Google Scholar]
- Ho, T.K. Random Decision Forests. In Proceedings of the Third International Conference on Document Analysis and Recognition (ICDAR’95), Montreal, QC, Canada, 14–16 August 1995; IEEE Computer Society: Washington, DC, USA, 1995; Volume 1, p. 278. [Google Scholar]
- Cortes, C.; Vapnik, V. Support Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
Parameter | Description | Value |
---|---|---|
number of participants | 20 | |
d | number of electrodes | 32 |
number of segments | 22 |
k | 3-NN | NB | RF | SVM | |
---|---|---|---|---|---|
1 | −100–50 | 0.4 | 0.35 | 0.15 | 0.4 |
2 | −50–0 | 0.55 | 0.45 | 0.45 | 0.2 |
3 | 0–50 | 0.35 | 0.4 | 0.3 | 0.45 |
4 | 50–100 | 0.35 | 0.65 | 0.35 | 0.4 |
5 | 100–150 | 0.4 | 0.65 | 0.55 | 0.4 |
6 | 150–200 | 0.5 | 0.5 | 0.2 | 0.35 |
7 | 200–250 | 0.55 | 0.5 | 0.5 | 0.35 |
8 | 250–300 | 0.55 | 0.35 | 0.55 | 0.55 |
9 | 300–350 | 0.65 | 0.8 | 0.75 | 0.5 |
10 | 350–400 | 0.5 | 0.6 | 0.7 | 0.45 |
11 | 400–450 | 0.7 | 0.65 | 0.55 | 0.5 |
12 | 450–500 | 0.55 | 0.75 | 0.5 | 0.55 |
13 | 500–550 | 0.6 | 0.6 | 0.5 | 0.7 |
14 | 550–600 | 0.5 | 0.65 | 0.55 | 0.75 |
15 | 600–650 | 0.6 | 0.7 | 0.75 | 0.6 |
16 | 650–700 | 0.65 | 0.8 | 0.85 | 0.65 |
17 | 700–750 | 0.65 | 0.7 | 0.45 | 0.45 |
18 | 750–800 | 0.5 | 0.5 | 0.55 | 0.15 |
19 | 800–850 | 0.25 | 0.4 | 0.3 | 0.25 |
20 | 850–900 | 0.4 | 0.55 | 0.5 | 0.5 |
21 | 900–950 | 0.5 | 0.6 | 0.2 | 0.8 |
22 | 950–1000 | 0.65 | 0.7 | 0.5 | 0.65 |
Person | 3-NN | NB | RF | SVM |
---|---|---|---|---|
1 | 1.0 | 0.92 | 1.0 | 0.69 |
2 | 1.0 | 1.0 | 1.0 | 0.0 |
3 | 1.0 | 0.92 | 1.0 | 0.85 |
4 | 0.23 | 1.0 | 1.0 | 0.0 |
5 | 1.0 | 1.0 | 1.0 | 0.0 |
6 | 0.92 | 0.92 | 0.69 | 0.0 |
7 | 1.0 | 1.0 | 1.0 | 0.08 |
8 | 0.38 | 0.54 | 0.77 | 0.54 |
9 | 0.0 | 0.23 | 0.15 | 0.0 |
10 | 0.92 | 0.92 | 0.85 | 0.08 |
11 | 0.46 | 1.0 | 1.0 | 1.0 |
12 | 0.85 | 0.85 | 0.92 | 0.15 |
13 | 0.0 | 0.85 | 0.54 | 0.0 |
14 | 0.0 | 0.77 | 0.92 | 0.92 |
15 | 0.77 | 0.69 | 0.38 | 0.31 |
16 | 1.0 | 0.77 | 0.85 | 1.0 |
17 | 1.0 | 0.92 | 0.38 | 1.0 |
18 | 1.0 | 1.0 | 1.0 | 1.0 |
19 | 0.15 | 0.46 | 1.0 | 1.0 |
20 | 0.31 | 0.0 | 0.0 | 1.0 |
Person | 3-NN | NB | RF | SVM |
---|---|---|---|---|
1 | 0.92 | 1.0 | 1.0 | 0.92 |
2 | 0.85 | 1.0 | 1.0 | 0.69 |
3 | 0.62 | 0.23 | 0.31 | 0.0 |
4 | 0.0 | 0.38 | 0.62 | 0.0 |
5 | 1.0 | 1.0 | 1.0 | 0.23 |
6 | 0.62 | 0.0 | 0.31 | 0.38 |
7 | 0.54 | 0.69 | 0.46 | 0.31 |
8 | 1.0 | 1.0 | 1.0 | 1.0 |
9 | 1.0 | 1.0 | 1.0 | 1.0 |
10 | 0.62 | 1.0 | 1.0 | 0.92 |
11 | 0.62 | 1.0 | 1.0 | 0.08 |
12 | 0.0 | 1.0 | 1.0 | 1.0 |
13 | 0.62 | 1.0 | 1.0 | 0.77 |
14 | 1.0 | 1.0 | 1.0 | 1.0 |
15 | 1.0 | 1.0 | 1.0 | 1.0 |
16 | 1.0 | 1.0 | 1.0 | 1.0 |
17 | 1.0 | 0.62 | 0.92 | 0.31 |
18 | 1.0 | 1.0 | 1.0 | 1.0 |
19 | 0.0 | 1.0 | 1.0 | 1.0 |
20 | 0.0 | 0.08 | 0.38 | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciejewska, K.; Froelich, W. Hierarchical Classification of Event-Related Potentials for the Recognition of Gender Differences in the Attention Task. Entropy 2021, 23, 1547. https://doi.org/10.3390/e23111547
Maciejewska K, Froelich W. Hierarchical Classification of Event-Related Potentials for the Recognition of Gender Differences in the Attention Task. Entropy. 2021; 23(11):1547. https://doi.org/10.3390/e23111547
Chicago/Turabian StyleMaciejewska, Karina, and Wojciech Froelich. 2021. "Hierarchical Classification of Event-Related Potentials for the Recognition of Gender Differences in the Attention Task" Entropy 23, no. 11: 1547. https://doi.org/10.3390/e23111547
APA StyleMaciejewska, K., & Froelich, W. (2021). Hierarchical Classification of Event-Related Potentials for the Recognition of Gender Differences in the Attention Task. Entropy, 23(11), 1547. https://doi.org/10.3390/e23111547