Relationship between Continuum of Hurst Exponents of Noise-like Time Series and the Cantor Set
Abstract
1. Introduction
2. Methods
2.1. The Truncated Lévy Flight (TLF)
2.2. Detrended Fluctuation Analysis (DFA)
2.3. Cantor Detrended Fluctuation Analysis (CDFA)
- f is a bijection;
- f is continuous;
- the inverse function is continuous.
2.3.1. Illustration of the Cantor Set
2.3.2. Definition
- 1.
- ;
- 2.
- ;
- 3.
- for .
2.3.3. Algorithm of the CDFA
- 1.
- given the time series of length N, find the integrated series shifted by the mean ,
- 2.
- the cumulatively summed series is then segmented into equal non-overlapping segments of various sizes . is based on the Cantor set theory scale (, ). The number of non-overlapping segments is calculated as:The Cantor set scaling function is computed for multiple segments to highlight both slow- and fast-evolving fluctuations that control the structure of the time series.
- 3.
- Root Mean Squared Fluctuation (RMSF) is computed for multiple scales of the integrated series:where j denotes the sample size of segments . We compute RMSF from to not . We sum from beginning to end and from end to beginning, then an average of the values is calculated so that every data point is considered. Conversely, the large segments interweave many local periods with both small and large fluctuations and therefore average out their differences in magnitude.
- 4.
- the least squares regression fit of versus the Cantor scales on a log–log scale produces the power-law notation computed for multiple scales:where Hurst exponent of the CDFA which measures memory behavior in the noise-like time series.
2.3.4. Real Time Series
3. Results
- 1.
- 2.
- 3.
- 4.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| DFA | Detrended Fluctuation Analysis |
| CDFA | Cantor Detrended Fluctuation Analysis |
| TLF | Truncated Lévy Flight |
| R/S | Rescaled Range Analysis |
References
- Guthrie, J.A.; Nymann, J.E. The topological structure of the set of subsums of an infinite series. Colloquium Math. 1988, 55, 323–327. Available online: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.desklight-a3fbdce0-a55c-413d-a53f-e1228d61fd02/c/cm55_2_15.pdf (accessed on 10 August 2021). [CrossRef]
- Mariani, M.C.; Asante, P.K.; Bhuiyan, M.A.M.; Beccar-Varela, M.P.; Jaroszewicz, S.; Tweneboah, O.K. Long-Range Correlations and Characterization of Financial and Volcanic Time Series. Mathematics 2020, 8, 441. [Google Scholar] [CrossRef]
- Mariani, M.C.; Kubin, W.; Asante, P.K.; Tweneboah, O.K.; Beccar-Varela, M.P. Multifractal Analysis of Daily US COVID-19 Cases. In Proceedings of the 10th Annual AHSE, STEM/STEAM and Education Conference, Honolulu, HI, USA, 9–11 June 2021; pp. 2333–4908. Available online: https://huichawaii.org/wp-content/uploads/2021/07/Mariani-Maria-C.-2021-HUIC.pdf (accessed on 12 August 2021).
- Mariani, M.C.; Kubin, W.; Asante, P.K.; Tweneboah, O.K.; Beccar-Varela, M.P.; Jaroszewicz, S.; Gonzalez-Huizar, H. Self-Similar Models: Relationship between the Diffusion Entropy Analysis, Detrended Fluctuation Analysis and Lévy Models. Mathematics 2020, 8, 1046. [Google Scholar] [CrossRef]
- Hurst, H.E. Long term storage capacity of reservoirs. Trans. Am. Soc. Eng. 1951, 116, 770–799. [Google Scholar] [CrossRef]
- Kantelhardt, J.W.; Koscielny-Bunde, E.; Rego, H.H.A.; Havlin, S.; Bunde, A. Detecting Long-range Correlations with Detrended Fluctuation Analysis. Phys. A 2001, 295, 441–454. [Google Scholar] [CrossRef]
- Peng, C.K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides. Phys. Rev. E 1994, 49, 1685–1689. [Google Scholar] [CrossRef] [PubMed]
- Mantegna, R.N.; Stanley, H.E. An introduction to Econophysics: Correlations and Complexity in Finance. Phys. Today 2000, 53, 148. [Google Scholar] [CrossRef]
- Gabaix, X.; Gopikrishnan, P.; Plerou, V.; Stanley, H.E. A theory of power-law distributions in financial market fluctuations. Nature 2003, 423, 267–270. [Google Scholar] [CrossRef]
- Beccar-Varela, M.; Gonzalez-Huizar, H.; Mariani, M.C.; Serpa, L.F.; Tweneboah, O.K. Chile2015: Lévy Flight and Long-Range Correlation Analysis of Earthquake Magnitudes in Chile. Pure Appl. Geophys. 2016, 173, 2257–2266. [Google Scholar] [CrossRef]
- Schinckus, C. From DNA to Economics: Analogy in Econobiology. Rev. Contemp. Philos. 2018, 17, 31–42. [Google Scholar] [CrossRef]
- Buldyrev, S.V.; Goldberger, A.L.; Havlin, S.; Mantegna, R.N.; Matsa, M.E.; Peng, C.K.; Simons, M.; Stanley, H.E. Long-range correlation properties of coding and noncoding DNA sequences: GenBank analysis. Phys. Rev. E 1995, 51, 5084–5091. [Google Scholar] [CrossRef]
- Bunde, A.; Havlin, S. Fractals and Disordered Systems; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1996. [Google Scholar]
- Hardstone, R.; Poil, S.S.; Schiavone, G.; Jansen, R.; Nikulin, V.V.; Mansvelder, H.D.; Linkenkaer-Hansen, K. Detrended Fluctuation Analysis: A Scale-Free View on Neuronal Oscillations. Front. Physiol. 2012, 3, 450. [Google Scholar] [CrossRef]
- Little, M.; McSharry, P.; Moroz, I.; Roberts, S. Nonlinear, Biophysically-Informed Speech Pathology Detection. IEEE Int. Conf. Acoust. Speed Signal Process. 2006, 2, 1080–1083. [Google Scholar] [CrossRef]
- Bunde, A.; Havlin, S.; Kantelhardt, J.W.; Penzel, T.; Peter, J.H.; Voigt, K. Correlated and Uncorrelated Regions in Heart-Rate Fluctuations during Sleep. Phys. Rev. Lett. 2000, 85, 3736–3739. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, K.; Ausloos, M. Application of the detrended fluctuation analysis (DFA) method for describing cloud breaking. Phys. A Stat. Mech. Its Appl. 1999, 274, 349–354. [Google Scholar] [CrossRef]
- de Moura, E.P.; Vieira, A.P.; Irmao, M.A.S.; Silva, A.A. Applications of detrended-fluctuation analysis to gearbox fault diagnosis. Mech. Syst. Signal Process. 2009, 23, 682–689. [Google Scholar] [CrossRef]
- Govindan, R.B.; Wilson, J.D.; PreiBl, H.; Eswaran, H.; Campbell, J.Q.; Lowery, C.L. Detrended fluctuation analysis of short datasets: An application to fetal cardiac data. Phys. D Nonlinear Phenom. 2007, 226, 23–31. [Google Scholar] [CrossRef]
- Li, E.; Mu, X.; Zhao, G.; Gao, P. Multifractal Detrended Fluctuation Analysis of Streamflow in the Yellow River Basin, China. Water 2015, 7, 1670–1686. [Google Scholar] [CrossRef]
- Benes, E.; Fodor, M.; Kovacs, S.; Gere, A. Application of Detrended Fluctuation Analysis and Yield Stability Index to Evaluate Near Infrared Spectra of Green and Roasted Coffee Samples. Processes 2020, 8, 913. [Google Scholar] [CrossRef]
- Scafetta, N. An Entropic Approach to the Analysis of Time Series; University of North Texas, ProQuest Dissertations Publishing: Denton, TX, USA, 2001. [Google Scholar]
- Weron, R. Measuring long-range dependence in electricity prices. In Empirical Science of Financial Fluctuations; Takayasu, H., Ed.; Springer: Tokyo, Japan, 2002. [Google Scholar] [CrossRef][Green Version]
- Kristoufek, L. Long-Range Dependence in Returns and Volatility of Central European Stock Indices; IES Working Paper 3/2010; IES FSV, Charles University: Prague, Czech Republic, 2010. [Google Scholar]
- Koponen, I. Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Phys. Rev. E 1995, 52, 1197–1199. [Google Scholar] [CrossRef]
- Available online: https://wiki.math.ntnu.no_media/tma4225/2015h/cantor_set_function.pdf (accessed on 13 September 2021).
- Ihlen, E. Introduction to Multifractal Detrended Fluctuation Analysis in Matlab. Front. Physiol. 2012, 3, 141. [Google Scholar] [CrossRef] [PubMed]








| Levels | Hurst Exponents |
|---|---|
| , |
| Levels | Hurst Exponents |
|---|---|
| Levels | Hurst Exponents |
|---|---|
| Time Series | H | Difference | H | |||
|---|---|---|---|---|---|---|
| White noise | 0.5 | 0.4997 | 0.0003 | 1.97 | 0.985 | 0.9844 |
| Monofractal | 0.79 | 0.781 | 0.009 | 1.28 | 1.0112 | 0.9997 |
| Multifractal | 0.86 | 0.851 | 0.009 | 1.17 | 1.0062 | 0.9976 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariani, M.C.; Kubin, W.; Asante, P.K.; Guthrie, J.A.; Tweneboah, O.K. Relationship between Continuum of Hurst Exponents of Noise-like Time Series and the Cantor Set. Entropy 2021, 23, 1505. https://doi.org/10.3390/e23111505
Mariani MC, Kubin W, Asante PK, Guthrie JA, Tweneboah OK. Relationship between Continuum of Hurst Exponents of Noise-like Time Series and the Cantor Set. Entropy. 2021; 23(11):1505. https://doi.org/10.3390/e23111505
Chicago/Turabian StyleMariani, Maria C., William Kubin, Peter K. Asante, Joe A. Guthrie, and Osei K. Tweneboah. 2021. "Relationship between Continuum of Hurst Exponents of Noise-like Time Series and the Cantor Set" Entropy 23, no. 11: 1505. https://doi.org/10.3390/e23111505
APA StyleMariani, M. C., Kubin, W., Asante, P. K., Guthrie, J. A., & Tweneboah, O. K. (2021). Relationship between Continuum of Hurst Exponents of Noise-like Time Series and the Cantor Set. Entropy, 23(11), 1505. https://doi.org/10.3390/e23111505

