A Method to Compute the Schrieffer–Wolff Generator for Analysis of Quantum Memory
Abstract
:1. Introduction
2. Equivalent Circuit Analysis of a Quantum Memory
2.1. Computational Ordering for Schrieffer–Wolff Transformation
2.2. Application to Analyzing the Circuit Hamiltonian
3. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Derivation of Hamiltonian from Circuit QED
Appendix B. Computational Ordering of Normal-Ordered and Antinormal-Ordered Operators
Appendix C. Generalization to Fermionic Operators
References
- Ladd, T.D.; Jelezko, F.; Laflamme, R.; Nakamura, Y.; Monroe, C.; O’Brien, J.L. Quantum computers. Nature 2010, 464, 45–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhaskar, M.K.; Riedinger, R.; Machielse, B.; Levonian, D.S.; Nguyen, C.T.; Knall, E.N.; Park, H.; Englund, D.; Loncar, M.; Sukachev, D.D.; et al. Experimental demonstration of memory-enhanced quantum communication. Nature 2020, 580, 60–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloyd, S. Enhanced Sensitivity of Photodetection via Quantum Illumination. Science 2008, 321, 1463–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, S.; Erkmen, B.I.; Giovannetti, V.; Guha, S.; Lloyd, S.; Maccone, L.; Pirandola, S.; Shapiro, J.H. Quantum Illumination with Gaussian States. Phys. Rev. Lett. 2008, 101, 253601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guha, S.; Erkmen, B.I. Gaussian-state quantum-illumination receivers for target detection. Phys. Rev. A 2009, 80, 052310. [Google Scholar] [CrossRef] [Green Version]
- Jo, Y.; Lee, S.; Ihn, Y.S.; Kim, Z.; Lee, S.-Y. Quantum illumination receiver using double homodyne detection. Phys. Rev. Res. 2021, 3, 013006. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Jo, Y.; Jeong, T.; Kim, J.; Kim, D.H.; Kim, D.; Kim, D.Y.; Ihn, Y.S.; Kim, Z. Optimal observables for Gaussian illumination. arXiv 2021, arXiv:2106.12109. [Google Scholar]
- Reagor, M.; Pfaff, W.; Axline, C.; Heeres, R.W.; Ofek, N.; Sliwa, K.; Holland, E.; Wang, C.; Blumoff, J.; Chou, K.; et al. Quantum memory with millisecond coherence in circuit QED. Phys. Rev. B 2016, 94, 014506. [Google Scholar] [CrossRef] [Green Version]
- Palomaki, T.A.; Harlow, J.W.; Teufel, J.D.; Simmonds, R.W.; Lehnert, K.W. Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature 2013, 495, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Julsgaard, B.; Grezes, C.; Bertet, P.; Molmer, K. Quantum Memory for Microwave Photons in an Inhomogeneously Broadened Spin Ensemble. Phys. Rev. Lett. 2013, 110, 250503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranjan, V.; O’Sullivan, J.; Albertinale, E.; Albanaese, B.; Chaneliere, T.; Schenkel, T.; Vion, D.; Esteve, D.; Flurin, E.; Morton, J.J.L.; et al. Multimode storage of quantum microwave field in electron spins over 100 ms. Phys. Rev. Lett. 2020, 125, 210505. [Google Scholar] [CrossRef]
- Heeres, R.W.; Vlastakis, B.; Holland, E.; Krastanov, S.; Albert, V.V.; Frunzio, L.; Jiang, L.; Schoelkopf, R.J. Cavity State Manipulation Using Photon-Number Selective Phase Gates. Phys. Rev. Lett. 2015, 115, 137002. [Google Scholar] [CrossRef] [PubMed]
- Koch, J.; Yu, T.M.; Gambetta, J.; Houck, A.A.; Schuster, D.I.; Majer, J.; Blais, A.; Devoret, M.H.; Girvin, S.M.; Schoelkopf, R.J. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 2007, 76, 042319. [Google Scholar] [CrossRef] [Green Version]
- Zhu, G.; Ferguson, D.G.; Manucharyan, V.E.; Koch, J. Circuit QED with fluxonium qubits: Theory of the dispersive regime. Phys. Rev. B 2013, 87, 024510. [Google Scholar] [CrossRef] [Green Version]
- Schrieffer, J.R.; Wolff, R.A. Relation between the Anderson and Kondo Hamiltonians. Phys. Rev. 1966, 149, 491. [Google Scholar] [CrossRef]
- Cohen-Tannoudji, C.; Dupont-Roc, J.; Grynberg, G. Atom-Photon Interactions: Basic Processes and Applications; Wiley-VCH: Weinheim, Germany, 1998; Chapter B-1. [Google Scholar]
- Bravyi, S.; DiVincenzo, D.; Loss, D. Schrieffer–Wolff transformation for quantum many-body systems. Ann. Phys. 2011, 326, 2793–2826. [Google Scholar] [CrossRef] [Green Version]
- Blais, A.; Grimsmo, A.L.; Grivin, S.M.; Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 2021, 93, 025005. [Google Scholar] [CrossRef]
- Pfaff, W.; Axline, C.J.; Burkhart, L.D.; Vool, U.; Reinhold, P.; Frunzio, L.; Jiang, L.; Devoret, M.H.; Schoelkopf, R.J. Controlled release of multiphoton quantum states from a microwave cavity memory. Nat. Phys. 2017, 13, 882–887. [Google Scholar] [CrossRef]
- Vool, U.; Devoret, M.H. Introduction to Quantum Electromagnetic Circuits. Int. J. Circ. Theor. Appl. 2017, 45, 897–934. [Google Scholar] [CrossRef] [Green Version]
- Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series 55. Tenth Printing; National Bureau of Standards (NBS): Washington, DC, USA, 1972.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-H.; Lee, S.-Y.; Jo, Y.; Kim, D.Y.; Kim, Z.; Jeong, T. A Method to Compute the Schrieffer–Wolff Generator for Analysis of Quantum Memory. Entropy 2021, 23, 1260. https://doi.org/10.3390/e23101260
Kim D-H, Lee S-Y, Jo Y, Kim DY, Kim Z, Jeong T. A Method to Compute the Schrieffer–Wolff Generator for Analysis of Quantum Memory. Entropy. 2021; 23(10):1260. https://doi.org/10.3390/e23101260
Chicago/Turabian StyleKim, Dong-Hwan, Su-Yong Lee, Yonggi Jo, Duk Y. Kim, Zaeill Kim, and Taek Jeong. 2021. "A Method to Compute the Schrieffer–Wolff Generator for Analysis of Quantum Memory" Entropy 23, no. 10: 1260. https://doi.org/10.3390/e23101260
APA StyleKim, D.-H., Lee, S.-Y., Jo, Y., Kim, D. Y., Kim, Z., & Jeong, T. (2021). A Method to Compute the Schrieffer–Wolff Generator for Analysis of Quantum Memory. Entropy, 23(10), 1260. https://doi.org/10.3390/e23101260