# Binary Communication with Gazeau–Klauder Coherent States

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Results

## 3. Discussion

## 4. Materials and Methods

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Akira Furusawa, A.; van Loock, P. Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Lo, H.K.; Preskill, J. Security of Quantum Key Distribution Using Weak Coherent States with Nonrandom Phases. Quantum Inf. Comput.
**2007**, 7, 431–458. [Google Scholar] - Ralph, T.C.; Gilchrist, A.; Milburn, G.J.; Munro, W.J.; Glancy, S. Quantum computation with optical coherent states. Phys. Rev. A
**2003**, 68, 042319. [Google Scholar] [CrossRef] [Green Version] - Gazeau, J.P. Coherent states in Quantum Information: An example of experimental manipulations. J. Phys. Conf. Ser.
**2010**, 213, 012013. [Google Scholar] [CrossRef] - Liu, L.; Wang, Y.; Lavie, E.; Wang, C.; Ricou, A.; Guo, F.Z.; Lim, C.C.W. Practical Quantum Key Distribution with Non-Phase-Randomized Coherent States. Phys. Rev. Appl.
**2019**, 12, 024048. [Google Scholar] [CrossRef] [Green Version] - Perelomov, A. Generalized Coherent States and Their Applications; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- Gottesman, D.; Kitaev, A.; Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A
**2001**, 64, 012310. [Google Scholar] [CrossRef] [Green Version] - Gazeau, J.P.; Klauder, J.R. Coherent states for systems with discrete and continuous spectrum. J. Phys. A Math. Gen.
**1999**, 32, 123–132. [Google Scholar] [CrossRef] - Hollingworth, J.M.; Konstadopoulou, A.; Chountasis, S.; Vourdas, A.; Backhouse, N.B. Gazeau-Klauder coherent states in one-mode systems with periodic potential. J. Phys. A Math. Gen.
**2001**, 34, 9463–9474. [Google Scholar] [CrossRef] - Antoine, J.P.; Gazeau, J.P.; Monceau, P.; Klauder, J.R.; Penson, K.A. Temporally stable coherent states for infinite well and Pöschl–Teller potentials. J. Math. Phys.
**2001**, 42, 2349–2387. [Google Scholar] [CrossRef] [Green Version] - Roy, B.; Roy, P. Gazeau–Klauder coherent state for the Morse potential and some of its properties. Phys. Lett. A
**2002**, 296, 187–191. [Google Scholar] [CrossRef] - Roy, P. Quantum statistical properties of Gazeau–Klauder coherent state of the anharmonic oscillator. Opt. Commun.
**2003**, 221, 145–152. [Google Scholar] [CrossRef] - Novaes, M.; de Aguiar, M.A.M.; Hornos, J.E.M. Generalized coherent states for the double-well potential. J. Phys. A Math. Gen.
**2003**, 36, 5773–5786. [Google Scholar] [CrossRef] - Popov, D.; Sajfert, V.; Zaharie, I. Pseudoharmonic oscillator and their associated Gazeau–Klauder coherent states. Phys. A Stat. Mech. Appl.
**2008**, 387, 4459–4474. [Google Scholar] [CrossRef] - Dajka, J.; Łuczka, J. Gazeau–Klauder cat states. J. Phys. A Math. Theor.
**2012**, 45, 244006. [Google Scholar] [CrossRef] - Ching, C.L.; Ng, W.K. Deformed Gazeau-Klauder Schrödinger cat states with modified commutation relations. Phys. Rev. D
**2019**, 100, 085018. [Google Scholar] [CrossRef] [Green Version] - Kitagawa, M.; Yamamoto, Y. Number-phase minimum-uncertainty state with reduced number uncertainty in a Kerr nonlinear interferometer. Phys. Rev. A
**1986**, 34, 3974–3988. [Google Scholar] [CrossRef] [PubMed] - Milburn, G.J. Quantum and classical Liouville dynamics of the anharmonic oscillator. Phys. Rev. A
**1986**, 33, 674–685. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Helstrom, C.W. Quantum Detection and Estimation Theory; Academic Press: Cambridge, MA, USA, 1976. [Google Scholar]
- Helstrom, C.W. Quantum detection and estimation theory. J. Stat. Phys.
**1969**, 1, 231–252. [Google Scholar] [CrossRef] [Green Version] - Yadollahi, F.; Tavassoly, M. A theoretical scheme for generation of Gazeau–Klauder coherent states via intensity-dependent degenerate Raman interaction. Opt. Commun.
**2011**, 284, 608–612. [Google Scholar] [CrossRef] [Green Version] - Aldana, S.; Bruder, C.; Nunnenkamp, A. Equationivalence between an optomechanical system and a Kerr medium. Phys. Rev. A
**2013**, 88, 043826. [Google Scholar] [CrossRef] [Green Version] - Iliyasu, A.M.; Venegas-Andraca, S.E.; Yan, F.; Sayed, A. Hybrid Quantum-Classical Protocol for Storage and Retrieval of Discrete-Valued Information. Entropy
**2014**, 16, 3537–3551. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**Trace distance between the Gazeau–Klauder coherent states $|J,0\rangle $ given by Equation (3) and the Perelomov coherent states $|z=\sqrt{J}\rangle $ depicted for selected values of the rescaled susceptibility $\mu $.

**Figure 2.**Helstrom bound ${P}_{H}$ given by Equation (19) depicted for selected values of $\mu $. For the sake of clarity, the range of ${P}_{H}$ in the figure is limited to ${P}_{H}\le 0.1$.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Dajka, J.; Łuczka, J.
Binary Communication with Gazeau–Klauder Coherent States. *Entropy* **2020**, *22*, 201.
https://doi.org/10.3390/e22020201

**AMA Style**

Dajka J, Łuczka J.
Binary Communication with Gazeau–Klauder Coherent States. *Entropy*. 2020; 22(2):201.
https://doi.org/10.3390/e22020201

**Chicago/Turabian Style**

Dajka, Jerzy, and Jerzy Łuczka.
2020. "Binary Communication with Gazeau–Klauder Coherent States" *Entropy* 22, no. 2: 201.
https://doi.org/10.3390/e22020201