# The δ(2,2)-Invariant on Statistical Submanifolds in Hessian Manifolds of Constant Hessian Curvature

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Statistical Manifolds and Statistical Submanifolds

**Proposition**

**1.**

**Proposition**

**2.**

## 3. Chen Inequality for the Chen Invariant $\mathbf{\delta}(\mathbf{2},\mathbf{2})$

**Lemma**

**1.**

**Proof.**

**Theorem**

**1.**

**Theorem**

**2.**

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Amari, S. Differential-Geometrical Methods in Statistics; Springer: Berlin, Germany, 1985. [Google Scholar]
- Opozda, B. A sectional curvature for statistical structures. Linear Alg. Appl.
**2016**, 497, 134–161. [Google Scholar] [CrossRef][Green Version] - Chen, B.-Y. Some pinching and classification theorems for minimal submanifolds. Arch. Math.
**1993**, 60, 568–578. [Google Scholar] [CrossRef] - Chen, B.-Y. Some new obstructions to minimal and Lagrangian isometric immersions. Jpn. J. Math.
**2000**, 26, 105–127. [Google Scholar] [CrossRef][Green Version] - Chen, B.-Y. Pseudo-Riemannian Geometry, δ-Invariants and Applications; World Scientific: Singapore, 2011. [Google Scholar]
- Chen, B.-Y.; Prieto-Martin, A. Classification of Lagrangian submanifolds in complex space forms satisfying a basic inequality involving δ(2,2). Differ. Geom. Appl.
**2012**, 30, 107–123. [Google Scholar] [CrossRef][Green Version] - Chen, B.-Y.; Prieto-Martin, A.; Wang, X. Lagrangian submanifolds in complex space forms satisfying an improved equality involving δ(2,2). Publ. Math. Debr.
**2013**, 82, 193–217. [Google Scholar] [CrossRef][Green Version] - Shima, H. The Geometry of Hessian Structures; World Scientific: Singapore, 2007. [Google Scholar]
- Mihai, A.; Mihai, I. Curvature invariants for statistical submanifolds of Hessian manifolds of constant Hessian curvature. Mathematics
**2018**, 6, 44. [Google Scholar] [CrossRef][Green Version] - Decu, S.; Haesen, S.; Verstraelen, L.; Vîlcu, G.-E. Curvature invariants of statistical submanifolds in Kenmotsu statistical manifolds of constant ϕ-sectional curvature. Entropy
**2018**, 20, 529. [Google Scholar] [CrossRef][Green Version] - Aydin, M.E.; Mihai, A.; Mihai, I. Generalized Wintgen inequality for statistical submanifolds in statistical manifolds of constant curvature. Bull. Math. Sci.
**2017**, 7, 155–166. [Google Scholar] [CrossRef] - Chen, B.-Y.; Mihai, A.; Mihai, I. A Chen first inequality for statistical submanifolds in Hessian manifolds of constant Hessian curvature. Results Math.
**2019**, 74, 165. [Google Scholar] [CrossRef] - Nomizu, K.; Sasaki, S. Affine Differential Geometry; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Simon, U. Affine Differential Geometry. In Handbook of Differential Geometry; Dillen, F., Verstraelen, L., Eds.; North-Holland: Amsterdam, The Netherlands, 2000; Volume 1, pp. 905–961. [Google Scholar]
- Vos, P.W. Fundamental equations for statistical submanifolds with applications to the Bartlett correction. Ann. Inst. Stat. Math.
**1989**, 41, 429–450. [Google Scholar] [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Mihai, A.; Mihai, I.
The *δ*(2,2)-Invariant on Statistical Submanifolds in Hessian Manifolds of Constant Hessian Curvature. *Entropy* **2020**, *22*, 164.
https://doi.org/10.3390/e22020164

**AMA Style**

Mihai A, Mihai I.
The *δ*(2,2)-Invariant on Statistical Submanifolds in Hessian Manifolds of Constant Hessian Curvature. *Entropy*. 2020; 22(2):164.
https://doi.org/10.3390/e22020164

**Chicago/Turabian Style**

Mihai, Adela, and Ion Mihai.
2020. "The *δ*(2,2)-Invariant on Statistical Submanifolds in Hessian Manifolds of Constant Hessian Curvature" *Entropy* 22, no. 2: 164.
https://doi.org/10.3390/e22020164