Subshifts on Infinite Alphabets and Their Entropy
Abstract
:1. Introduction
2. Symbolic Dynamics on Finite Alphabets
3. Symbolic Dynamics on Infinite Alphabets
4. Entropy Theory
5. Shifts along Infinite (Directed) Graphs
- (i)
- For all , is not a vertex of G. Then , where v runs through the vertices of G, is an open neighborhood of s which does not intersect .
- (ii)
- There exists such that is not an edge of G but is a vertex of G. Then , where y runs through the vertices of G which fulfill the condition that is an edge of G, which is an open neighborhood of s, does not intersect .
- (iii)
- There exists such that is not an edge of G but is a vertex of G. Then , where y runs through the vertices of G which fulfills the condition that is an edge of G, which is an open neighborhood of s, does not intersect . □
6. Entropy Numbers
7. Examples
Funding
Conflicts of Interest
References
- Gurevich, B. Topological entropy of enumerable Markov chains. Sov. Math. Dokl. 1969, 10, 911–915. [Google Scholar]
- Petersen, K. Chains, entropy, coding. Ergod. Theory Dyn. Syst. 1986, 6, 415–448. [Google Scholar] [CrossRef] [Green Version]
- Fiebig, D.; Fiebig, U.R. Topological boundaries for countable state Markov shifts. Proc. Lond. Math. Soc. 1995, 70, 625–643. [Google Scholar] [CrossRef]
- Fiebig, D. Factor maps, entropy and fiber cardinality for Markov shifts. Rocky Mt. J. Math. 2001, 31, 955–986. [Google Scholar] [CrossRef]
- Fiebig, D.; Fiebig, U.R. Embedding theorems for locally compact Markov shifts. Ergod. Theory Dyn. Syst. 2005, 25, 107–131. [Google Scholar] [CrossRef]
- Ott, W.; Tomforde, M.; Willis, P. One-sided shift spaces over infinite alphabets. arXiv 2012, arXiv:1209.1760. [Google Scholar]
- Goncalves, D.; Sobottka, M.; Starling, C. Sliding block codes between shift spaces over infinite alphabets. Math. Nachrichten 2016, 289, 2178–2191. [Google Scholar] [CrossRef] [Green Version]
- Goncalves, D.; Sobottka, M.; Starling, C. Two-sided shift spaces over infinite alphabets. J. Aust. Math. Soc. 2017, 103, 357–386. [Google Scholar] [CrossRef] [Green Version]
- Parry, W. Intrinsic Markov chains. Trans. Am. Math. Soc. 1964, 112, 55–66. [Google Scholar] [CrossRef]
- Adler, R.; Konheim, A.; McAndrew, M. Topological entropy. Trans. Am. Math. Soc. 1965, 114, 309–319. [Google Scholar] [CrossRef]
- Hedlund, G. Endomorphisms and automorphisms of the shift dynamical system. Math. Syst. Theory 1969, 3, 320–375. [Google Scholar] [CrossRef]
- Rado, R. Universal graphs and universal functions. Acta Arith. 1964, 9, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Truss, J. The group of the countable universal graph. Math. Proc. Camb. Philos. Soc. 1985, 98, 213–245. [Google Scholar] [CrossRef]
- Mohar, B. The spectrum of an infinite graph. Linear Algebra Its Appl. 1982, 48, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Salama, I. Topological entropy and recurrence of countable chains. Pac. J. Math. 1988, 134, 325–341. [Google Scholar] [CrossRef]
- Lind, D. The entropies of topological Markov shifts and a related class of algebraic integers. Ergod. Theory Dyn. Syst. 1984, 4, 283–300. [Google Scholar] [CrossRef] [Green Version]
- Boyle, M. Symbolic dynamics and matrices. In Combinatorial and Graph-Theoretical Problems in Linear Algebra; Brualdi, R., Ed.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 1–38. [Google Scholar]
- Stevanovich, D. Spectral Radius of Graphs; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Ferenczi, S. Substitution dynamical systems on infinite alphabets. Ann. L’Institut Fourier 2006, 56, 2315–2343. [Google Scholar] [CrossRef]
- Grillenberger, C. Constructions of strictly ergodic systems 1: Positive entropy. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 1973, 25, 323–334. [Google Scholar] [CrossRef]
- Weiss, B. Subshifts of finite type and sofic systems. Monatshefte für Mathematik 1973, 77, 462–474. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezagholi, S. Subshifts on Infinite Alphabets and Their Entropy. Entropy 2020, 22, 1293. https://doi.org/10.3390/e22111293
Rezagholi S. Subshifts on Infinite Alphabets and Their Entropy. Entropy. 2020; 22(11):1293. https://doi.org/10.3390/e22111293
Chicago/Turabian StyleRezagholi, Sharwin. 2020. "Subshifts on Infinite Alphabets and Their Entropy" Entropy 22, no. 11: 1293. https://doi.org/10.3390/e22111293
APA StyleRezagholi, S. (2020). Subshifts on Infinite Alphabets and Their Entropy. Entropy, 22(11), 1293. https://doi.org/10.3390/e22111293