Context-Aware Superpixel and Bilateral Entropy—Image Coherence Induces Less Entropy
Abstract
:1. Introduction
2. Context-Aware Superpixel (CASP)
3. Bilateral Entropy
4. Results
4.1. Parameter Settings
- Maximal clustering iteration limit : determines the maximal depth of the superpixel hierarchy, which is 7 to acquire superpixels in 6 levels.
- Maximal cluster size : We set to 100. During each similarity clustering stage, only the group of input pixels which size exceeds 100 is divided into subgroups.
- Minimal cluster size : We set to 4. During each merging stage, a cluster with a size smaller than 4 is merged into the most similar neighbor.
- neighbourhood range : We initialized to 8 to retrieve 8 neighbors of a pixel.
4.2. Evaluation Criteria
- : Given a ground-truth segmentation , measures the fraction of pixels that leak across its boundaries caused by the overlapping superpixels [29],
- : Given the boundaries of ground-truth segmentations, denoted by , measures the percentage of the ground-truth boundaries recovered by superpixels, denoted by . We compute by
- : Given all ground-truth segmentations , gives the largest overlapping area between superpixels and the ground truth segments [30]In general, is the highest achievable accuracy for object segmentation that utilizes superpixels as units.
4.3. Baseline Methods
- SLIC employs a balance factor to weigh the importance of color and coordinates [21]. We initialize the balance factor 40 and merged tiny image regions that radius is smaller than 1.
- LSC approximates the coherence metric using a kernel function and maps color and coordinates to a high dimensional feature space [22]. We set the compactness factor to .
4.4. Evaluation Datasets
- BSD300 [31] is a natural image database, which suits conventional methods working in chrominance space. However, the labels are manually placed, which are not precise, shown in Figure 4a. We hence do not use it for quantitative evaluation. To initialize LSC and SLIC, the superpixel numbers in 6 levels are .
- MRBrainS [32] contains 3T T1-weighted magnetic resonance (MR) brain scans. We employ 4 subjects from the training dataset, each of which contains 48 slices. The labels are carefully placed, including gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). The background image regions are removed out and filled with an intensity of 0. As the MR images are in the UINT16 encoding format, which cannot be used by the LSC, we transform the intensity range to UINT8 and duplicate each slice to 3-channels. To initialize LSC and SLIC, the superpixels number of 6 levels are .And next, for testing the segmentation performance under noise corruption, we add spatially varying Rician noise to MR magnitudes. To achieve this, we firstly simulate phase maps according to the literature [33]; and next, we generated both real and imaginary components and added spatially varying Gaussian noise to each component separately. The noise level follows the 2D Gaussian distribution in the same manner as the literature [34]. Based on the noisy components, we eventually generate the noisy magnitude with Rician noise using the simple sum of square (SoS) image reconstruction manner [35]. More specifically, we added 4 levels of spatially varying Gaussian noise to the complex components, with maximal noise levels . The noisy images and residual noise maps are shown in Figure 3.
4.5. Segmentation Performance
4.6. Encoding Efficiency
4.7. Segmentation Robustness and Local Image Coherence
5. Discussions and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CASP | Context-Aware SuperPixel |
SLIC | Simple Linear Iterative Clustering |
LSC | Linear Spectral Clustering |
USE | Under-Segmentation Error |
BR | Boundary Recall |
ASA | Achievable Segmatiaon Accuracy |
MR | Magnetic Resonance |
STD | Standard Deviation |
SoS | Sum of Square |
PCC | Pearson’s Correlation Coefficient |
References
- Shi, J. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 888–905. [Google Scholar]
- Wagemans, J.; Elder, J.H.; Kubovy, M.; Palmer, S.E.; Peterson, M.A.; Singh, M.; von der Heydt, R. A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure–ground organization. Psychol. Bull. 2012, 138, 1172–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.J.; Yu, M.; Li, B.J.; He, Y. Intrinsic manifold SLIC: A simple and efficient method for computing content-sensitive superpixels. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 653–666. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Feng, J.; Su, W.; Lv, Z.; Xiao, F.; Qiu, S. Normalized Euclidean Super-Pixels for Medical Image Segmentation. In Proceedings of the International Conference on Intelligent Computing, Liverpool, UK, 7–10 August 2017; pp. 586–597. [Google Scholar]
- Huo, J.; Wu, J.; Cao, J.; Wang, G. Supervoxel based method for multi-atlas segmentation of brain MR images. NeuroImage 2018, 175, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Kaufhold, J.; Collins, R.; Hoogs, A.; Rondot, P. Recognition and segmentation of scene content using region-based classification. In Proceedings of the IEEE International Conference on Pattern Recognition (ICPR), Hong Kong, China, 20–24 August 2006; Volume 1, pp. 755–760. [Google Scholar]
- Fulkerson, B.; Vedaldi, A.; Soatto, S. Class segmentation and object localization with superpixel neighborhoods. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Kyoto, Japan, 27 September–4 October 2009; pp. 670–677. [Google Scholar]
- Wang, S.; Lu, H.; Yang, F.; Yang, M.H. Superpixel tracking. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain, 6–13 November 2011; pp. 1323–1330. [Google Scholar]
- Gao, T.; Gao, Z.; Li, J.; Sun, Z.; Shen, M. The perceptual root of object-based storage: An interactive model of perception and visual working memory. J. Exp. Psychol. Hum. Percept. Perform. 2011, 37, 1803–1823. [Google Scholar] [CrossRef] [Green Version]
- Peterson, D.J.; Berryhill, M.E. The Gestalt principle of similarity benefits visual working memory. Psychon. Bull. Rev. 2013, 20, 1282–1289. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Gao, Q.; Tang, N.; Shui, R.; Shen, M. Organization principles in visual working memory: Evidence from sequential stimulus display. Cognition 2016, 146, 277–288. [Google Scholar] [CrossRef]
- Attneave, F. Some informational aspects of visual perception. Psychol. Rev. 1954, 61, 183. [Google Scholar] [CrossRef]
- Attneave, F.; Arnoult, M.D. The quantitative study of shape and pattern perception. Psychol. Bull. 1956, 53, 452. [Google Scholar] [CrossRef]
- Marblestone, A.H.; Wayne, G.; Kording, K.P. Toward an integration of deep learning and neuroscience. Front. Comput. Neurosci. 2016, 10, 94. [Google Scholar] [CrossRef]
- Rajalingham, R.; Issa, E.B.; Bashivan, P.; Kar, K.; Schmidt, K.; DiCarlo, J.J. Large-scale, high-resolution comparison of the core visual object recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks. J. Neurosci. 2018, 38, 7255–7269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gangopadhyay, P.; Das, J. Do Primates and Deep Artificial Neural Networks Perform Object Categorization in a Similar Manner? J. Neurosci. 2019, 39, 946–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bronstein, M.M.; Bruna, J.; LeCun, Y.; Szlam, A.; Vandergheynst, P. Geometric deep learning: Going beyond euclidean data. IEEE Signal Process. Mag. 2017, 34, 18–42. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Feng, J.; Bu, Q.; Liu, F.; Zhang, M.; Ren, Y.; Lv, Y. Breast mass detection in digital mammogram based on Gestalt psychology. J. Healthc. Eng. 2018, 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Feng, J.; Zhang, Z.; Su, H.; Cui, L.; He, H.; Liu, L. Breast mass classification via deeply integrating the contextual information from multi-view data. Pattern Recognit. 2018, 80, 42–52. [Google Scholar] [CrossRef]
- Liu, F.; Feng, J.; Chen, G.; Wu, Y.; Hong, Y.; Yap, P.T.; Shen, D. DeepBundle: Fiber Bundle Parcellation with Graph Convolution Neural Networks. arXiv 2019, arXiv:1906.03051. [Google Scholar]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Chen, J. Superpixel segmentation using linear spectral clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1356–1363. [Google Scholar]
- González, R.C.; Woods, R.E.; Eddins, S.L. Digital Image Processing Using MALAB; Pearson: London, UK, 2009. [Google Scholar]
- Ungerleider, L.G.; Haxby, J.V. ‘What’and ‘where’in the human brain. Curr. Opin. Neurobiol. 1994, 4, 157–165. [Google Scholar] [CrossRef]
- Koffka, K. Perception: An introduction to the Gestalt-Theorie. Psychol. Bull. 1922, 19, 531–585. [Google Scholar] [CrossRef] [Green Version]
- Bar, M. Visual objects in context. Nat. Rev. Neurosci. 2004, 5, 617–629. [Google Scholar] [CrossRef]
- Lisman, J. The challenge of understanding the brain: Where we stand in 2015. Neuron 2015, 86, 864–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do, C.B.; Batzoglou, S. What is the expectation maximization algorithm? Nat. Biotechnol. 2008, 26, 897–899. [Google Scholar] [CrossRef] [PubMed]
- Levinshtein, A.; Stere, A.; Kutulakos, K.N.; Fleet, D.J.; Dickinson, S.J.; Siddiqi, K. Turbopixels: Fast superpixels using geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 2290–2297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.Y.; Tuzel, O.; Ramalingam, S.; Chellappa, R. Entropy rate superpixel segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Springs, CO, USA, 20–25 June 2011; pp. 2097–2104. [Google Scholar]
- Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Vancouver, BC, Canada, 7–14 July 2001; pp. 416–423. [Google Scholar]
- Mendrik, A.M.; Vincken, K.L.; Kuijf, H.J.; Breeuwer, M.; Bouvy, W.H.; De Bresser, J.; Alansary, A.; De Bruijne, M.; Carass, A.; El-Baz, A.; et al. MRBrainS challenge: Online evaluation framework for brain image segmentation in 3T MRI scans. Comput. Intell. Neurosci. 2015, 2015, 813696. [Google Scholar] [CrossRef] [Green Version]
- Pizzolato, M.; Fick, R.; Boutelier, T.; Deriche, R. Noise floor removal via phase correction of complex diffusion-weighted images: Influence on DTI and Q-space metrics. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2016; pp. 21–34. [Google Scholar]
- Liu, F.; Feng, J.; Yap, P.T.; Shen, D. Multi-Kernel Filtering: An Extension of Bilateral Filtering Using Image Context. arXiv 2019, arXiv:1908.06307. [Google Scholar]
- Chen, G.; Dong, B.; Zhang, Y.; Lin, W.; Shen, D.; Yap, P.T. Denoising of Infant Diffusion MRI Data via Graph Framelet Matching in x-q Space. IEEE Trans. Med. Imaging 2019. [Google Scholar] [CrossRef]
- Friston, K. Learning and inference in the brain. Neural Netw. 2003, 16, 1325–1352. [Google Scholar] [CrossRef]
- Badcock, P.B.; Friston, K.J.; Ramstead, M.J.; Ploeger, A.; Hohwy, J. The hierarchically mechanistic mind: An evolutionary systems theory of the human brain, cognition, and behavior. Cogn. Affect. Behav. Neurosci. 2019, 19, 1319–1351. [Google Scholar] [CrossRef]
- Lu, Y.; Yin, J.; Chen, Z.; Gong, H.; Liu, Y.; Qian, L.; Li, X.; Liu, R.; Andolina, I.M.; Wang, W. Revealing detail along the visual hierarchy: Neural clustering preserves acuity from V1 to V4. Neuron 2018, 98, 417–428. [Google Scholar] [CrossRef]
- Luck, S.J.; Vogel, E.K. The capacity of visual working memory for features and conjunctions. Nature 1997, 390, 279–281. [Google Scholar] [CrossRef]
- Baddeley, A. Working memory. Science 1992, 255, 556–559. [Google Scholar] [CrossRef] [PubMed]
- Barlow, H.B. Possible principles underlying the transformation of sensory messages. Sens. Commun. 1961, 1, 217–234. [Google Scholar]
- Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information theory and statistical mechanics. II. Phys. Rev. 1957, 108, 171–190. [Google Scholar] [CrossRef]
- Hinton, G. Deep learning—A technology with the potential to transform health care. J. Am. Med. Assoc. 2018, 320, 1101–1102. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Zhang, X.; Wang, H.; Feng, J. Context-Aware Superpixel and Bilateral Entropy—Image Coherence Induces Less Entropy. Entropy 2020, 22, 20. https://doi.org/10.3390/e22010020
Liu F, Zhang X, Wang H, Feng J. Context-Aware Superpixel and Bilateral Entropy—Image Coherence Induces Less Entropy. Entropy. 2020; 22(1):20. https://doi.org/10.3390/e22010020
Chicago/Turabian StyleLiu, Feihong, Xiao Zhang, Hongyu Wang, and Jun Feng. 2020. "Context-Aware Superpixel and Bilateral Entropy—Image Coherence Induces Less Entropy" Entropy 22, no. 1: 20. https://doi.org/10.3390/e22010020
APA StyleLiu, F., Zhang, X., Wang, H., & Feng, J. (2020). Context-Aware Superpixel and Bilateral Entropy—Image Coherence Induces Less Entropy. Entropy, 22(1), 20. https://doi.org/10.3390/e22010020